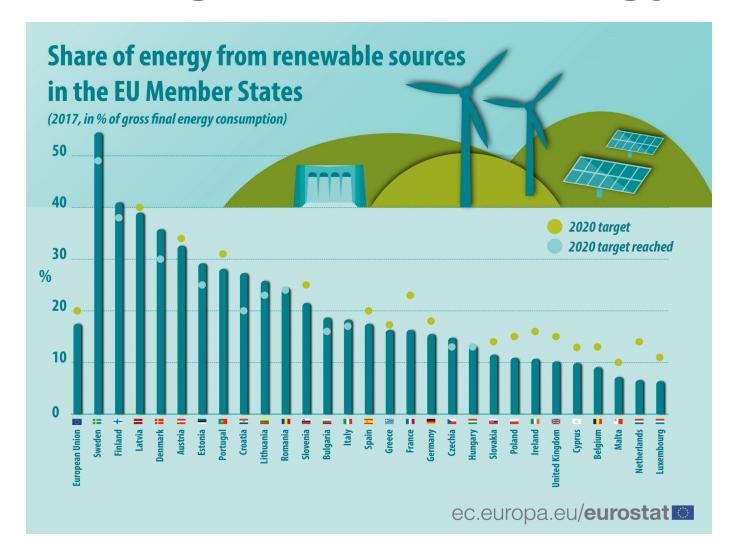


Making S2S data actionable

The visualisation challenge

Isadora Ch. Jiménez (Barcelona Supercomputing Center)

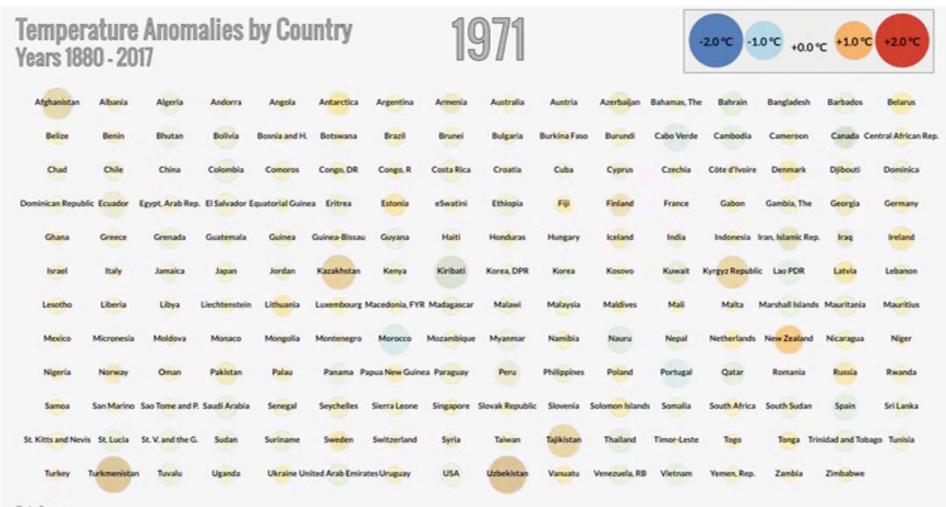
and I Vigo, A Soret, J Cannata, A Manrique-Suñén, Ll Lledó, V Torralba, N Cortesi, Ll Palma, N González-Reviriego and F J Doblas-Reyes



This project has received funding from the Horizon 2020 programme under grant agreement n°776787. The content of this presentation reflects only the author's view. The European Commission is not responsible for any use that may be made of the information it contains.

S2S4E project context

Increasing renewable energy use


BUT integrating renewable energy is challenging

Production and demand balance

... what about climate variability?

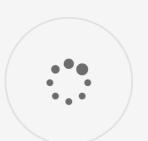
Data Source:

NASA GISS, GISTEMP Land-Ocean Temperature Index (LOTI), ERSSTv5, 1200km smoothing
https://data.giss.nasa.gov/gistemp/
Awerage of monthly temperature anomalies, GISTEMP base period 1951-1980.

Video license: CC-BY-4.0 Antti Lipponen (@anttilip)

Weather Forecast

Present-15d 10 d-1 month

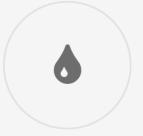

Climate Predictions

1 month-7 month 2-30 years

Multidecadal and Projections

20-100 years

S2S4E project


WIND POWER

Wind speed and capacity factor predictions

SOLAR POWER

Solar radiation and capacity factor predictions

HYDROPOWER

Prediction and changes in inflow predictions

ENERGY DEMAND

Temperature and consumption rates predictions

Predictability weeks to months ahead

How can we predict climate for the coming season if we cannot predict the weather next week? **Slow components** (sea surface temperature, soil moisture, etc.) force the atmosphere.

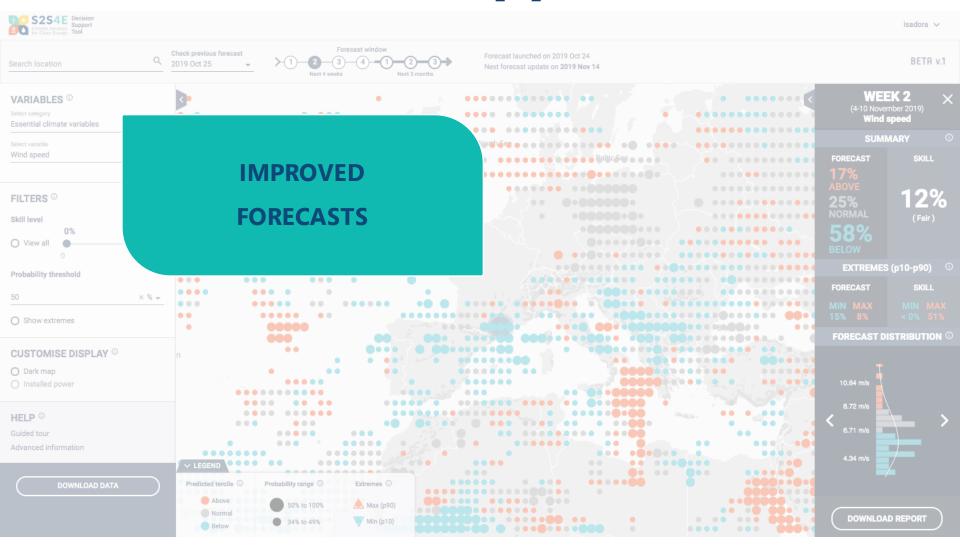
Research & Innovation

Research

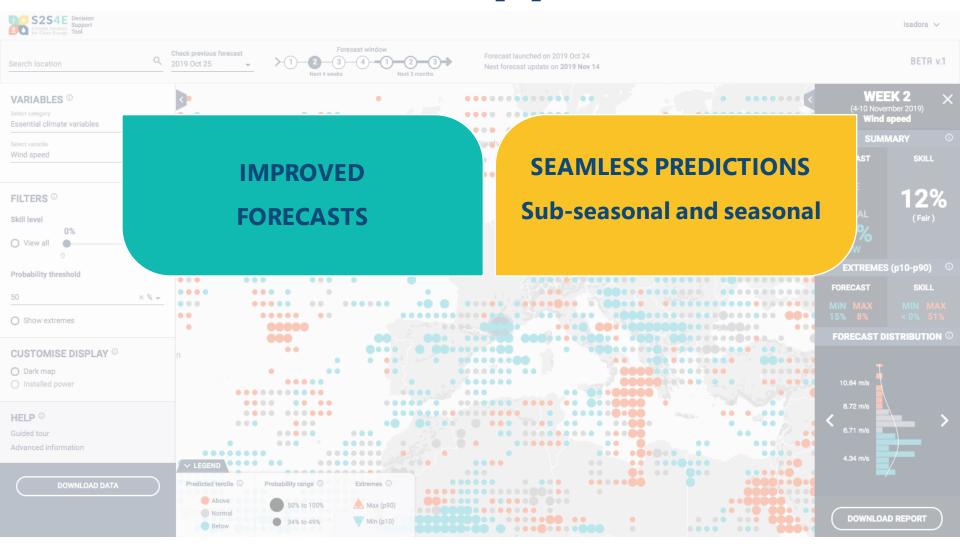
- Assess available datasets of reanalyis
- Climate drivers of energy indicators
- Performance assessment of s2s forecasts systems
- Evaluation of case studies
- Weather regimes
- Conditional predictability

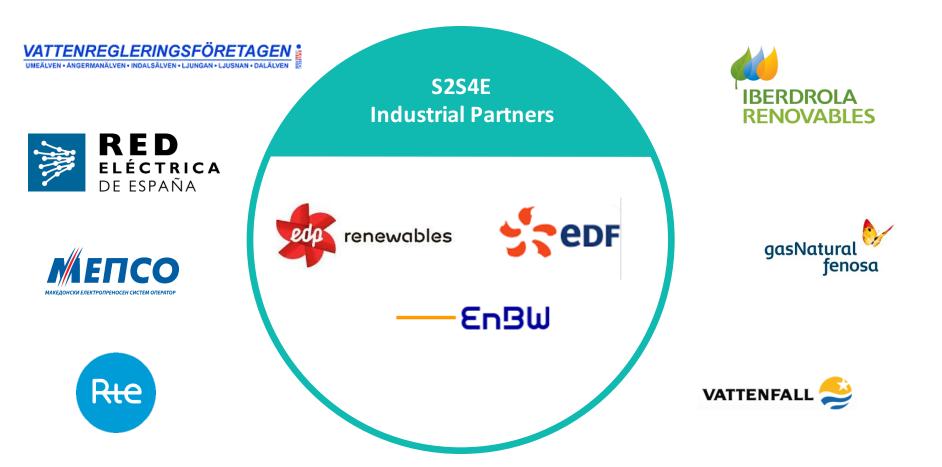
Research & Innovation

- Assess available datasets of reanalyis
- Climate drivers of energy indicators
- Performance assessment of s2s forecasts systems
- Evaluation of case studies
- Weather regimes
- Conditional predictability


PROVIDE AN OPERATIONAL DECISION SUPPORT TOOL

DST


... WITH TECHNOLOGY
READINESS LEVEL 7 (TRL 7)



Coproduction with industrial partners...

...and external stakeholders

Weather Forecast Climate Predictions Multidecadal and Projections Present-15d 10 d-1 month 1 month-7 month 2-30 years 20-100 years

Applications for wind/solar/hydro generation

Post-construction decisions

Energy producers:

commit energy sales for next day

Grid operators: Market prices

and grid balance

Energy traders: Anticipate

energy prices

Plant operators: planning for cleaning and maintenance

Post-construction decisions

Energy producers: Resource

management strategies

Energy traders: Resource effects on

markets

Plant operators: Planning for maintenance works, especially

offshore wind O&M

Plant investors: anticipate cash flow,

optimize return on investments

Pre-construction decisions

Power plant developers: Site selection. Future

risks assessment.

Investors: Evaluate return on investments
Policy-makers: Asses changes to energy mix
River-basin managers: understand changes to

better manage the river flow

Applications for demand

Daily operation decisions

Grid operators:

Anticipate hot/cold days. Schedule power plants to reinforce supply.

Energy traders: Anticipate energy prices.

Mid-term planning

Grid operators:

Anticipate hotter/colder seasons Schedule power plants to reinforce supply.

Energy traders:

Anticipate energy prices.

Long-term planning

Grid operators:

Anticipate addition of more capacity. Adaptation of transmission lines

Policy-makers:

Plan addition of more capacity.
Understand changes to energy mix

Is this useful for other sectors?

e.g. Agriculture (wine)

Time scale	Decision type	Challenges	MED-GOLD climate services tools	Benefits
Short- term (e.g., 30 days)	Agro- management	 Optimize pest treatments Optimize irrigation planning 	TemperaturePrecipitation	 Reduce pest damage while protecting the environment Optimize the use of water resources
	Quality management	 Better estimate pest affectation and frost damages Correct olive formation 	 Numerical modelling of pests and evapotranspiration Insolation 	Optimize olive and olive oil quality
Mid-term (e.g., 6 months)	Agro- management	Optimize fertilization planningOptimize irrigation planning	 Temperature Precipitation Numerical modelling of productivity 	SustainabilityOptimization of the use of fertilizers
	Stock management	 Better estimation of olive production Improve the selling process 		Improve stock and selling planning

https://www.med-gold.eu/

...The purpose of this workshop is to find out

Hands-on session

Thank you

Isadora.jimenez@bsc.es

Public reports will be available for download on our website: www.s2s4e.eu

Project coordinator: Albert Soret, **Barcelona Supercomputing Center (BSC)**

s2s4e@bsc.es

@s2s4e

S2S4E and MED-GOLD have received funding from the Horizon 2020 programme under grant agreement n°776787 and n°776467. The content of this presentation reflects only the author's view. The European Commission is not responsible for any use that may be made of the information it contains.