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Summary

This report aims at studying the economic gains for renewable energy (RE) companies of using

S2S forecasts in the context of extreme weatherevents. The analysis uses the 8 case studies

Gl +1 AGi G| GI {. .. "1| boGW|d =zl KCx 1T +doWAd =zi
of decision-making processes that could benefit from S2S forecasts.

Chapter 1 of this report presents the impacts of 8 weather anomalies on the energy markets
and the role of S2S in supporting RE companies to mitigate the impacts on their economic
activities. Chapter 2 presentsa decision analysis is performed on 3 case studies covering those
risk management areas highlighted by users as relevant in each context. Particular attention is
given to financial decisions. Finally, Chapter 3identifies the information needed from deci sion-
d" F+7 " d Ax1 dA+xl KGOxq ALyisededs@mbldsC+ | z1 AT ol AGzIl zi
The analysisin Chapter 1 shows that extreme weather events generate volatility in the energy
markets. This volatility, e.g. sudden changes in demand and RE supply with consequence®sn
wholesale prices, is a driver for RE companies to considelS2S forecasts as a mean of managing
the risks involved. A relevant result in Chapter 2 is thatthe role of sub-seasonal forecasts in
financial decisions could be valuable both for wind producers and for energy traders.
Interestingly, making a decisional error due to a change in expectations (that finally do not
match the observations) led by a forecast concerns decisiormakers more than gaining from
the use of an informative forecast. This suggeds the importance for the climate service to
provide information about the reliability and uncertainties entailed in the forecasts.
Additionally, the analysis of usefulness of subseasonal forecasts on operation and
maintenance (O&M) activities of a wind farm shows positive results. Thus, sasonal forecasts
are found to be relevant for budget planning, although it is not possible t o quantify the benefits
due to confidentiality reasons. While this study focuses on extreme events, the nextsteps in
the evaluation of S2S4Eforecasts will consist of an economic assessment in the operational
phase (D.3).
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Introduction

Sub-seasonal to seasonal (S2S) forecasts range from 10d to 1 month (subseasonal) and from
1 to 7 months (seasonal). Research on S2S forecasting is quite a recent field that is raising
interest about their applications in different sectors such as energy, agriculture or insurance
among many. Decisiorrmakers in these sectors are exploring opportunities to integrate the
probabilistic information provided by S2S forecasts into their decisional strategies.
Consequently, raising efforts are undertaken to evaluate climate services providing sub-
seasonal or seasonal forecasts for decisioamaking (Bruno Soares, Daly, & Dessai, 2018)
However, there is a need for more research and to our best knowledge, the value of sub
seasonal forecasts in the energy sector has na been sufficiently investigated.

The S2S4E project is developing a climate service named Decision Support Tool (DST)-
addressing the needs of the energy sector. The service isbeing developed in close
collaboration with energy companies and with the support of transmission system operators
(TSO9 and distribution system operators (DSOs) as well. At the time of writing the report , this
is the first tool offering an integrated S2S forecast for solar, wind, hydro generation and
electricity demand.

The vale of S2S forecasts for decisionmaking is strictly dependent on the usability and
reliability of the information provided by a particular climate service and on the context of the
decision. This report offers an assessment of the economic gains of using te DST for RE
| zd A" | G+ d “maKing praBaysezrélated to extreme weather events. Extreme events are
increasing in frequency and intensity due to climate change (Tippett, 2018). They affect the
energy markets and RE sources availability. S2S forecast allowing to predict such anomalies,
have the potential to improve risk management. S2S4Eforecasts also generate value by
supporting decision-makers in their usual business activities unde normal climatic conditions .
The impact of operational real-time forecasts for decision-making processes will be assessed
in the following stages of the project (D2.3) when companies will be testing the operational
DST. This report focuses uniquely on weather extremes cases.

During previous stages of the project 8 case studies wereidentified by industrial partners and

other stakeholders (D2.1). Different extreme weather events were analysed in each case and
forecasts for the period of interest were produced (D4.1) This report analyses the impacts of
these 8 anomalieson the energy markets and investigates how S2S forecasts ould improve

decision-making under uncertainty. For 3 case studies, an indepth decision analysis of
economic gains of using S2Sforecasts was conducted in active collaboration with users. The
report is structured to address different audiences offering basic analysis in the first chapter
for those less familiar with economic concepts and then increasing in complexity. Chapter 1
describes overall energy market effects associated to the extreme weather events in 8 case
studies and discusses when companies would benefit from using subseasonal or seasonal
forecasts. Chapter 2 provides an assessmenbf decision-specific economic gains when using

sub-seasonal forecasts for 3 case studies (an example ofesasonal application is also discussed).
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In particular, for the first case study, we calculate deviations costs that occurred during the

icing event in Romania in 2014 and elaborate on potential gains of using S2S forecasts for

budget planning, O&M activiti es, and financial decisions.The two other case studies focus

primarily on financial decisions (i.e., hedging strategies) to mitigate financial risks of uncertain

whether events. Using the cold waves that affected Germany and France in 2017 and 201&s

an example, we show in stylied experiments the potential economic benefits of using sub -

seasonal forecasts for portfolio-optimization decisions. Chapter 3 presents a theoretical

concept of decision-making under uncertainty and identifies information neededfil zd o0 d 71 ¢~
perspectives.
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1 The impact of Extreme Weather Events on the
Energy Market sand Companies0 per f or mance

This chapter offers a general overview of the impacts of extreme weather events on the energy
markets in eight case studies, which were identified during previous stages of the project in

close collaboration with energy industrial partners and external stakeholders. For each case
study, renewable energy producers recognisedthe potential of achieving economic gains by

using seasonal and/or sub-seasonal forecasts in different decisionmaking processes.The list

of case studies follows:

1. Cold spellin Franceand Germany in 2017

Heat wave and solar generation in Germany in 2013
Heat wave and wind droughts in Spain in 2016
Floods in Sweden 2015

Freezing event in Romania 2014

Wind droughts in USA in 2015

Cold spellin France in 2018

Record wind generation in Spain in 2018

© NOo O~ ON

These case studies describe the periods with an unusual climate behaviour, which affected the
energy markets and therefore, these events were identified by stakeholders as the most
relevant and interesting to investigate. For each case study, weprovide a brief description of
the events. To illustrate potential impacts of weather events on the energy markets, we use
data publicly available at the portal of the European Network of Transmission System
Operators (ENTSGE), which provides/inter alia hourly data on load*, generation, and prices of
electricity for European countries from 2015 onwards. For case studies related to earlier
periods, we use other data sources if available. For most of the case studies, we show the
development of daily average demand and generation of electricity as well as day-ahead prices
for the periods of weather events. We also show average values of those market variables in
years before and after the events to highlight abnormal fluctuations in the energy markets.
Thischapter provides only a general overview over extreme weather events and their potential
impacts on demand, generation, and prices of electricity without any in-depth quantitative
analysis of causal effects between weather and market variables. Changes indemand,
generation and prices of electricity could also depend on many other non-weather-related
factors, whose analysis isoutside the scope of this projects.

! Load corresponds to electricity demand.
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1.1 Cold spell France/Germany 2017

Cold spell over Europe created a combination of large increase in electricity demand and
lower than normal wind power generation.

Region: France, Germany Period: 17-23 Jan 2017

Forecasttype?: Sub-seasonal Main interest: Demand and wind

Forecastavailable®: Wind speed, temperature and demand

Table 1: Region, period, forecast type and main interest for case study 1.

1.1.1 France

From 17" until 23" Jaruary 2017, there was a cold spellover Europe, which resulted in a
substantial increase in electricity demand in France. Cold winter in January 2017 increased the
peak demand to more than 20% above the level of January 2016, but noticeably the previous
winter (2015/2016) was relatively warm. France was exporting electricity in January 2016, while
in January 2017, domestic demand for electricity was satisfied by imports from Germany, Spain,
and the UK (ENTSGE, 2017)*. Furthermore, this period was characterised by a relatively low
wind speed, which led to a reduction in wind power generation. It should also be noted that
several nuclear reactors were under maintenance during this period in France. Moreover, most
of Europe suffered from an unusual drought in autumn and winter, which caused an additional
pressure on the electricity market. For instance, France experienced one of the driest
Decembers in 2016 for decades, which resulted in a reduction in the supply of hydropower
generation. Both a higher demand and shortage of power supply caused a strong increase in
in day-ahead electricity prices®. For example, on 25" January, the dayahead electricity price in
France was approximately 121 Euro/MWh. However, in February, demand and prices for
electricity stabilised to their normal levels and by the end of February, demand for electricity
was even lower than the average levelof 2015, 2016, and 2018(Figures 1 and4).

2 Forecast typeindicates whether industrial partners and/or external stakeholders are interested in sub-
seasonal or seasonal forecast within the scope of the case study. According to this, forecasts have been
produced for the time (week or month) of the case study.

3 Industrial partners and/or external stakeholders requested specific forecasts variablesdepending of
the nature of the anomaly and their decision-making. Forecasts have been produced accordingly for
back-testing purposes. Forecasts are available in D4.1.

4 ENTSOE (2017): Market analysis annex to the ENTSGE May 2017 report on managing critical grid
situations: success and challenges. Available athttps://www.entsoe.eu/outlooks/seasonal/

5 In the report we refer to day -ahead prices for the wholesale market.
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Figure 1: Daily average of hourly power load in France in January  -February 2017. Only
weekdays are shown. Source: ENTSO-E

6000

%4000 ‘ ‘
N ~
2000 ’
S ® < P o5 & P g
< g Y ¥ ¥ &V v v
Month_Day
Years: — 2017 — Average of 2015, 2016, and 2018

Figure 2: Daily average of hourly wind power generation in France in January -February

2017. Source: ENTSO-E
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Figure 3: Daily average of hourly hydro power generation in France in January -February
2017. Source: ENTSO-E
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Figure 4: Day-ahead electricity prices in France in January -February 2017. Only
weekdays are shown. Source: ENTSO-E

Interviewees revealed thatsub-seasoral forecasts oftemperature, wind and demand are useful
in situations as this one and the one created by the same anomaly in Germany- presented in
the following section. In chapter 2 the use of sub-seasonal forecasts in hedging decisions
during this anomaly is analysed.
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1.1.2 Germany

Germany also experienced a cold spell and low wind speed by the endof January 2017. he
German electricity market is less sensitiveto changes in temperature compared to the French
market. Therefore, the demand was less affected bylow temperature s. On the other hand, the
Germany electricity market was more affected by losses m wind power generation due to its
large amount of installed wind capacity. Low wind and solar generation were compensated by
increased fossil fuel generation, so that the demand was satisfied without imports (ENTSGE,
2017). In 17" and 24™ January, there were two price spikes, with the maximal increase in
electricity price of 102 Euro/MWh, which has been the highest level since the cold spell in
February 2012. This also holds for the monthly average German power pice, i.e., January 2017
was the most expensive month in five years since February 2012.Yet, in February 2017,
electricity prices stabilised to their average level of 2015, 2016, and 2018.

Forboth French and Germanelectricity markets, ananalysis of sub-seasonalimpactsz | AT " | £71 d~
financial decisions is performed in chapter 2, user cases 1 and7.
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Figure 5: Daily average of hourly power load in Germany in January  -February 2017.
Only weekdays are shown. Source: ENTSO-E
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Figure 6: Daily average of hourly wind power generation in Germany in January -
February 2017. Source: ENTSO-E
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Figure 7: Day-ahead electricity prices in Germany in January -February 2017. Only
weekdays are shown. Source: ENTSO-E
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1.2 Heat wave and solar generationin Germany 201 3

A high-pressure sygem over central Europe resulted in large electricity demand, higher
than normal solar generation and low precipitation rates.

Region: Germany Period: July 2013

Demand, solar, wind

Forecasttype: Seasonal Main interest:
and hydro

_ Precipitation, inflows, solar radiation, solar capacity factor, wind
Forecastavailable:
speed, temperature and demand

Table 2: Region, period , forecast type and main in terest for case study 2.

July-August 2013 in Germany experienced abnormally high solar radiation and low
precipitation. Temperature anomalies were also higher than the climatological average, while
wind anomalies were below the climatological average. It was estimated that excessmortality
in Frankfurt am Main due to an abnormally high temperature was 113% among the population
aged more than 80 years. Overall, the heat wave caused over 70,000 fatalities in Western
Europe (Heudorf & Schade, 2014) Moreover, a high temperature resulted in increases in
wholesale electricity prices due to electrical cooling needs, whereas low precipitation and wind
speed implied a lower supply of domestic power generation. ®

High solar radiation led to a moderate increase in solar power production. However, low wind
speeds reduced wind power substantially and caused an imbalance in the energy system. With
nearly 39 GW of installed photovoltaic capacity, periods of high solar radiation during summer
in Germany may affect the relative contribution of ene rgy from different sources considerably.
During these periods of elevated solar generation, expensive and polluting conventional power
plants may be shut down, with a downturn in the energy trading market as a consequence. In
this context, coal power plants are typically used as a backup to ensire security of supply. In
Germany, coal supply is largely based on river transport which is dependent on river
navigability associated with precipitation levels. In this specific case, the very low precipigtion
levelsrestricted transportation capacity on major waterways like the Rhine. Having an accurate
seasonal forecast would allow to better schedule the transportation of coal to power plants
and thereby alleviate to some extent the shortage of domestic power supply (i.e., imbalances
in the energy system).

6 Data on load was not available for that period.
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Figure 8: Daily average of hourly solar power generation in Germany in July -August
2013. Source: Open Power System Data (OPSD)

Figure 9: Daily average of hourly wind power generation in Germany in July -August
2013. Source: Open Power System Dat a (OPSD)





























































































































































































































































































