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Summary 

Climate information on subseasonal (up to 6 weeks ahead) to seasonal (up to 7 months 
ahead) timescales is needed for decision-making in a number of sectors, yet skill – and 
consequently user uptake – of forecasts in Europe has been limited.  The present deliverable 
seeks to explore the potential for “pattern based” forecasting using a variety of different 
techniques applied to a range of leading numerical weather prediction systems at 
subseasonal and seasonal time-horizons.  The central concept of pattern-based forecasting is 
to use the NWP forecast to predict the large-scale atmospheric conditions, while utilizing 
statistics based on observational records to link the circulation to surface climate impacts 
(and hence energy impacts).   

The aim of this document is therefore two-fold.  Firstly, it seeks to extend the pattern-
forecasting techniques developed in Deliverable D4.2 to produce quantitative forecasts of 
surface meteorological and energy-system impacts, comparing their performance against 
alternative forecasting methodologies (e.g., grid-point NWP and simpler benchmark forecasts 
such as climatology and persistence).  Secondly, it investigates the closely-related subject of 
conditional predictability: here interpreted to mean changes in the predictive skill produced 
by forecast models during different prevailing atmospheric conditions (here, Stratospheric 
Sudden Warmings).  It therefore builds upon previous deliverables in terms of technique and 
analysis (particularly Deliverable D4.2 but also D3.1, D3.2 and D4.1). 

A series of different pattern-based forecast methods are tested across multiple different NWP 
forecast systems.  It is demonstrated that pattern-based methods can be utilized with NWP 
systems on both seasonal and subseasonal timescales to derive modest skill improvements in 
energy forecasts over equivalent forecasts based on direct grid-point predictions of surface 
climate variables.  The precise nature of this skill improvement is, however, highly dependent 
on the methodology used and the geographical region considered.  A key conclusion 
therefore is that the process of the design of the pattern-based forecast must be closely 
integrated with the process of forecast skill assessment (e.g., through repeated iterations in 
design).  Furthermore, skill must be assessed continuously and on a case-by-case basis: skill 
in a particular performance metric or region should not be taken to imply skill in all regions 
or metrics. 

 

Keywords 

Climate prediction; Forecasting; Subseasonal prediction; Seasonal prediction; Energy; 
Electricity; Renewables; Power; Wind; Hydro; Solar; Demand; Weather patterns; Weather 
regimes; Teleconnection patterns 
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Glossary 

EATC Euro Atlantic Teleconnections.  A set of 
patterns and corresponding indices 
describing the large-scale atmospheric 
circulation over the Euro-Atlantic region, 
usually applied at monthly/seasonal 
timescales. 

ECV Essential Climate Variable.  Examples include 
surface temperature, precipitation, near-
surface wind speeds. 

Forecast month n Validity time for a given seasonal prediction.  
Month 1 corresponds to the first full calendar 
month after the last member of the ensemble 
forecast was launched.  Full discussion is 
provided in Deliverable D4.1 but, for 
illustration, month 1 corresponds to 
December for both of the following 
examples: 

E.g. 1, a forecast containing a set of ensemble 
members launched in the window Nov 1st – 
Nov 30th. 

E.g. 2, a forecast containing a set of ensemble 
members, all of which are launched on Nov 
1st. 

Forecast week n Validity time for a given subseasonal 
prediction.  Week 1 corresponds to an 
aggregation of days 5-11, etc.  Full discussion 
is provided in Deliverable D4.1. 

HWR Hydrological Weather Regime.  A set of 
tailored patterns describing the atmospheric 
circulation linked to local precipitation. 

NWP Numerical Weather Prediction (usually 
referring to the process of producing 
forecasts using gridded NWP models).  In the 
present context, NWP models include 
atmospheric models which are coupled to 
representations of additional Earth system 
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components evolving on timescales relevant 
to subseasonal and seasonal forecasting (e.g., 
sea ice, oceans). 

Reanalysis A 3-D gridded reconstruction of the 
atmosphere spanning a few or several 
decades combining model simulations and 
observations. 

S2S Subseasonal to seasonal 

Seasonal forecast A meteorological forecast targeting a lead-
time of a few to several months.  In the 
present context, this usually refers to a 
forecast generated by an atmospheric NWP 
model which has been coupled to 
appropriate models of Earth system 
components evolving on relevant timescales 
(e.g., sea ice, oceans). 

Subseasonal forecast A meteorological forecast targeting a lead-
time of a few to several weeks.  In the present 
context, this usually refers to a forecast 
generated by an atmospheric NWP model 
which has been coupled to appropriate 
models of Earth system components evolving 
on relevant timescales (e.g., sea ice, oceans). 

TCT Targeted Circulation Type (formerly “Impact 
Pattern” in D3.2).  A set of tailored patterns 
describing the atmospheric circulation linked 
to nationally-aggregated energy indicators 
(e.g., demand, wind power) over Europe. 

WR Weather Regime.  A set of patterns 
describing the atmospheric circulation over 
the Euro-Atlantic region, usually applied at 
daily/weekly timescales and typically 
following the general method of Cassou 
(2008). 
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1 Introduction 
Climate information on subseasonal (up to 6 weeks ahead) to seasonal (up to 7 months 
ahead) timescales is needed for decision-making in a number of sectors.  Compared to the 
short-to medium-range (up to 10 days ahead), subseasonal to seasonal (S2S) time-scales 
hold potential value for a wide range of users who are affected by variability in climate, water 
and energy and who would benefit from understanding and better managing climate-related 
risks (Bruno Soares et al., 2017; Stoft, 2002; Green, 2005). Wind, solar, hydro and energy 
demand are examples of renewable energy applications in which S2S information can affect 
decision making. 

In Europe, there has been relatively little uptake and use of S2S forecasts by users for 
decision making, compared to other parts of the world, such as the USA and Australia, 
possibly associated with the relatively limited inherent predictability and limited quality of 
forecasts (Bennett et al., 2017; Mendoza et al., 2017; Arnal et al., 2018). However, recent 
advances in our understanding and forecasting of climate have begun to result in somewhat 
skillful predictions, which can consequently lead to improvements in awareness, 
preparedness and decision-making from a user perspective (Bruno Soares and Dessai, 2016). 

A first assessment of the forecast skill achievable in the European Centre for Medium Range 
Forecasting (ECMWF) subseasonal and seasonal forecast systems applied to energy was 
provided in Deliverable D4.1.  That deliverable focused on evaluating skill in directly 
forecasting surface meteorological variables (e.g., wind, temperature, precipitation, insolation; 
often referred to as Essential Climate Variables or ECVs) and their subsequent conversion into 
energy-relevant quantities (wind power, demand, hydrology, solar power).  In general, skill 
was shown to exist over some regions of Europe - but at rather modest levels - for multi-
week (subseasonal) and multi-month (seasonal) lead times.  In this document, such forecasts 
of surface climate or energy impacts are referred to as “grid point” forecasts. 

Deliverable D4.2 began to explore a different angle concerning the predictive capabilities of 
numerical weather prediction (NWP) systems at subseasonal and seasonal time-horizons.  
Rather than predicting gridded surface variables and converting these into estimates of 
energy impacts, the ability of the models to predict the large-scale circulation of the 
atmosphere in the Euro-Atlantic sector was instead interrogated.  Modest levels of skill were 
found to exist in predicting the large-scale circulation patterns (particularly for weeks 1-2 and 
months 0-1, decreasing with lead-time), though this depended on the detailed methodology 
employed.  In general, however, the NWP models were found to have subtle deficiencies in 
the link between the circulation patterns and their consequent surface impacts: typically the 
surface impact associated with a given circulation type was too week or spatially shifted (on 
average).  This therefore appears to open an opportunity for hybrid forecasting, whereby the 
NWP system is used to forecast the large-scale circulation while statistical techniques are 
then used to link the circulation state to surface climate and energy impacts.  A classic (and 
simple) example of this can be found in, e.g., seeking to assess or predict the state of the 
North Atlantic Oscillation pattern, and linking that state forecast to an energy impact using 
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observed historic data (e.g., Brayshaw et al.2011; Ely et al., 2013; Thornton et al.2019).  As in 
D4.2, in this document such hybrid methods are referred to as “pattern-based” forecasts. 

The aim of this document is therefore two-fold.  Firstly, it seeks to extend the pattern-
forecasting techniques developed in Deliverable D4.2 to produce quantitative forecasts of 
surface meteorological and energy-system impacts, comparing their performance against 
alternative forecasting methodologies (e.g., grid-point NWP and simpler benchmark forecasts 
such as climatology and persistence).  Secondly, it investigates the closely-related subject of 
conditional predictability: here interpreted to mean changes in the predictive skill produced 
by forecast models during different prevailing atmospheric conditions (here, Stratospheric 
Sudden Warmings).  It therefore builds upon previous deliverables in terms of technique and 
analysis (particularly Deliverable D4.2 but also D3.1, D3.2 and D4.1). 

As in D4.2, several different and complementary approaches to pattern-based forecasting are 
tested and reported in the following discussion.  A common language and methodology has 
been followed as much as possible throughout this document but, in order to facilitate rapid 
scientific exploration of this research topic, the nature of exploratory research, the individual 
chapters should be viewed as a set of parallel investigations, each adopting its own specific 
methodological innovations. 

The ability of seasonal forecast models to predict surface weather conditions using a 
combination of Euro-Atlantic Teleconnection (EATC) patterns is examined first (Chapter 3).  
This is followed by an analysis of the extent to which Weather Regimes (WR) and Targeted 
Circulation Types (TCTs) can be used to predict surface climate and energy impacts (Chapters 
4 and 5; note that the WR methodology differs substantially between the two chapters).  
Hydrological Weather Regimes (HWR) are investigated in Chapter 6, followed by the impact 
of SSW on conditional predictability (Chapter 7).  A concluding discussion and synthesis is 
provided in Chapter 8. 

As noted above, each chapter operates within a common analysis framework (which has 
evolved from Deliverables D3.2 and D4.1, similarly to D4.2) which is outlined briefly in 
Chapter 2 (e.g., forecast and observational datasets, pattern identification methods), though 
important methodological distinctions are reported in detail within the Method section of 
each individual Chapter. 
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2 Data and Methods 

2.1 Introduction 
Many of the datasets and tools used in this document follow closely the methods developed 
in earlier deliverables (particularly D3.1, D3.2 and D4.1) and in the “partner” deliverable, D4.2.  
As these datasets and tools are central to the science that follows, the following sections seek 
to provide a high-level overview of the datasets and methods involved.  More comprehensive 
discussion of each dataset/tool can be found in previous documentation (references 
provided). 

Consistent with the research objectives of this deliverable, however, it is noted that different 
research activities (generally corresponding to the individual chapters) have introduced a 
range of experimental innovations to the basic techniques in order to advance understanding 
and/or improve predictive skill.  As such, the detailed implementation of each dataset or tool 
for a particular research task is provided separately within each of Chapters 3 to 7. 

 

2.2 Meteorological datasets and forecasting systems  

2.2.1 Reanalysis data 

Reanalysis products have appeared as an efficient alternative to in-situ observations to 
investigate the past atmospheric conditions, both for monitoring and research purposes 
(Gregow et al., 2016; Compo et al., 2011; Dee et al., 2011). These global datasets are the result 
of combining a state-of-the-art numerical model with the assimilation of past observations 
from several sources to recreate the state of the atmosphere in a gridded three-dimensional 
mesh (Fujiwara et al., 2017).  Many different reanalysis products exist and a full description 
and intercomparison of their properties is provided in D3.1.  Based on this evaluation, in this 
report, three reanalyses products are selected for use: ERA-Interim, ERA5 and JRA55. All 
three, are modern-era reanalyses constrained by a full suite of observational data.  Each 
dataset is described briefly below. 

ERA-Interim (Dee et al., 2011) has become a very used dataset for the energy sector 
(Gregow et al. 2016; Bett and Thornton 2016). The dataset covers the 1979-2017 period (and 
has latterly been continued to 2019), and the temporal resolution is either 3 h (forecast) or 6 
h (analysis), depending on the variable (see Dee et al., 2011, for details). The spatial resolution 
of the data set is 0.75 ° (approximately 80 km) on 60 vertical levels from the surface up to 0.1 
hPa.  ERA-Interim’s data assimilation includes near-surface air temperature, pressure and 
relative humidity, upper-air temperature, wind, specific humidity and rain-affected SSM/I 
radiances. 

ERA5 is the new climate reanalysis dataset from ECMWF, intended to improve on the earlier 
ERA-Interim dataset. It features a spatial resolution of ~31 km and 137 vertical levels, high 
time frequency output for surface fields (typically hourly), uses a newer version of the ECMWF 
IFS numerical model (Cycle 41r2), and assimilates a full range of available observation data 
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(enhanced from ERA-Interim).  The dataset is intended to cover 1950 to near real time 
though, in general, more limited periods are used in the present analysis (e.g., only the period 
1980-2018 was available when the analysis was conducted and more restricted periods are 
used when comparing against, e.g., subseasonal hindcast datasets) .  ERA5 includes a 10-
member ensemble (seeking to to represent observational uncertainty), though here the 
deterministic high-resolution version is used. 

JRA-55 (Kobayashi et al. 2015) is a reanalysis produced by the Japan Meteorological Agency 
(JMA) operational data assimilation system, which is based on the operational system as of 
December 2009 with a 4D-VAR scheme with a six-hourly update cycle. This reanalysis starts in 
1958 and provides data with six-hourly temporal resolution, a T319 spectral truncation (55 
km) and 60 hybrid vertical levels. This reanalysis is distributed in real-time making it suitable 
for the development of products in an operational context. … 

 
2.2.2 Sudden Stratospheric Warmings 

Sudden stratospheric warmings are defined as times when there is a large and rapid 
temperature increase in the winter polar stratosphere, associated with a reversal of the 
climatological westerly winds (Butler et al., 2017). These extreme events can have substantial 
impacts on winter surface climate, including increased frequency of cold air outbreaks over 
Europe and a southward shift of the storm track, hence the investigation into their 
predictability conducted here.   

A database of these events has been compiled by Butler et al. (2017, available at: 
https://www.esrl.noaa.gov/csd/groups/csd8/sswcompendium/majorevents.html), defined 
using an index based on the ERA-interim re-analysis (equivalent dates for the ERA5 re-
analysis are not yet available). This results in 23 dates in the period (1980-2018), 14 dates in 
the ECMWF hindcast period (1996-2015), and 12 dates in the NCEP hindcast period (1999-
2010).  

 
2.2.3 Seasonal forecast systems 

Several European national meteorological centres and institutions produce operational 
seasonal predictions. Seven different seasonal prediction systems have been employed in this 
report, from the European Center for Medium-Range Weather Forecasts (ECMWF), Deutscher 
Wetterdienst (DWD), Meteo France (MF), UK Met Office (UKMO) and Centro Euro-
Mediterraneo sui Cambiamenti Climatici (CMCC). Many of those predictions can be obtained 
from the Climate Data Store (CDS) of the Copernicus Climate Change Service (C3S) initiative, 
which provides a unified access point, and a common hindcast period and spatial resolution. 
Other predictions have been obtained from ECMWF's Meteorological Archival and Retrieval 
System (MARS). Some details of each of the prediction systems employed here, as the 
number of ensemble members, the hindcast period or the spatial grid are detailed in Table 1. 
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Notice that not all the datasets have been employed for all the different analyses available in 
this report. 

 

Center 
Prediction 
system 

Data source Analyzed period 
Ensemble 
members 

Horizontal grid 

CMCC SPS3 CDS 1993-2018 40 
Regular 
360x180 

DWD System2 CDS 1993-2018 30 
Regular 
360x180 

UKMO 
GLOSEA5 
System13 

CDS 1993-2018 28 
Regular 
360x180 

MF System6 CDS 1993-2018 25 
Regular 
360x180 

ECMWF SEAS5 CDS 1993-2018 25 
Regular 
360x180 

ECMWF SEAS5 MARS 1981-2018 51 
Regular 
Gaussian F160 
(640x320) 

ECMWF SEAS5 MARS 1981-2016 
25 (re-
forecasts) 

Regular 
Gaussian F160 
(640x320 

ECMWF System4 MARS 1982-2016 15 
Regular 
Gaussian F128 
(512x256) 

Table 1: Technical details of the seasonal prediction systems 

 

In addition to the operational forecast systems, to investigate the long-term variability of 
atmospheric teleconnections, we use the ERA-20C reanalysis (Poli et al. 2013, 2015) as 
reference dataset, and the seasonal hindcasts from the ASF-20C dataset (Weisheimer et al., 
2017). Both ERA-20C and ASF-20C use an atmosphere-only model, and the simulations of the 
ASF-20C dataset were designed to match the set up of the ERA-20C reanalysis. ASF-20C 
further consists of 51 ensemble members, similar to the operational seasonal forecasts 
produced by ECMWF. There are 4 start dates, November/February/May/August, and the 
forecast period is 4 months. Both ERA-20C and ASF-20C span the period 1900-2010. 

 
2.2.4 Subseasonal forecast systems 
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In the subseasonal time range, two systems from the S2S database (Vitart et al. 2017) have 
been employed: ECMWF monthly forecast system (MFS or extended range) and NCEP CFSv2. 
ECMWF-MFS (Vitart 2004) runs coupled ocean-atmosphere integrations up to 46 days issued 
every Monday and Thursday. Operational configuration consists of 51 ensemble members 
while the hindcasts consist of 11 members. It has been described in Deliverable 4.1 (Section 
3.1.2) and its skill for surface variables over Europe was assessed in Deliverable 4.1 (Section 5). 

National Centers for Environmental Prediction’s (NCEP) Climate Forecast System (Saha et al. 
2014). It is a coupled system to both the ocean model (GFDL MOM4) and an ice model. The 
forecast length for subseasonal predictions is 45 days and the system is run every 6 hours. 
The real-time forecast runs three perturbed members and one control run initialised four 
times a day (00 UTC, 06 UTZ, 12 UTC and 18 UTC). The hindcast period is fixed and spans 12 
years (1999-2010). The hindcast is also initialised daily, four times a day, but only one 
simulation at the time, producing a lagged ensemble of 4 members daily (in some cases, a 
larger ensemble is created by including a wider lagging period, e.g., up to 3 days previous). 

 
2.2.5 Forecast horizons 

In terms of the temporal scale analysis, forecast skill is evaluated using the following lead-
time convention.  For seasonal forecasts, month 1 corresponds to one month after 
initialization (so for an ensemble of forecasts launched at any point in November, forecast 
month 1 is December).  For subseasonal forecasts, week 1 is defined as the week starting at 
day 5 (i.e., forecast week 1 is the period day 5 to 11, week 2 is days 12-18 etc).  A 
complication occurs in the case of lagged ensemble forecasts, which may include ensemble 
members launched earlier (in which case day 5 is defined relative to the most recently 
launched ensemble member). 

 

2.3 Pattern identification methods 

2.3.1 East Atlantic Teleconnection Patterns 

European climate variability is often analyzed through the role of atmospheric 
teleconnections. The rationale behind this is to find a set of fixed atmospheric circulation 
patterns and corresponding temporally varying indices that can be used to describe monthly 
or seasonal circulation anomalies and their surface impacts in a simplified way. A common 
method to define teleconnections is through Rotated Empirical Orthogonal Function (REOF) 
analysis (Barnston and Livesy, 1987). This dimensionality reduction technique allows 
approximating geopotential height anomaly fields as a linear combination of only a few 
variability modes or spatial patterns:  

𝐴𝑛𝑜𝑚(𝑡, 𝑥, 𝑦) = , 𝑇𝐶𝐼0(𝑡) ∙ 𝑇𝐶𝑃0(𝑥, 𝑦)
345678

09:

+ 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠	 
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Teleconnection patterns (TCP) and indices (TCI) --i.e. the weights in the linear combination-- 
are chosen so that their combination minimizes the residual term. Over the Euro-Atlantic 
region, the first four modes are typically employed and are commonly referred to as the 
North Atlantic Oscillation (NAO), East Atlantic (EA), East-Atlantic/Western Russia (EAWR) and 
Scandinavian pattern (SCA) teleconnections respectively:  

𝐴𝑛𝑜𝑚 = 𝑁𝐴𝑂0 ∗ 𝑁𝐴𝑂H + 𝐸𝐴0 ∗ 𝐸𝐴H + 𝐸𝐴𝑊𝑅0 ∗ 𝐸𝐴𝑊𝑅H + 𝑆𝐶𝐴0 ∗ 𝑆𝐶𝐴H + 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 

The observed patterns and indices for these four Euro-Atlantic Teleconnections (EATC) have 
been obtained from ERA-Interim reanalysis. Each EATC pattern is associated with a set of 
surface temperature, wind speed, solar radiation and precipitation impacts, which can, in turn, 
be associated with particular impacts on the European energy system (see Deliverable D3.2 
and also Brayshaw et al., 2011, Cradden et al., 2017, Zubiate et al., 2017). Forecasts of each 
EATC index are obtained from seasonal prediction systems by projecting predicted anomalies 
onto the observed patterns (i.e. by making a scalar product between the anomaly fields and 
the patterns). 

 
2.3.2 Weather Regimes 

Weather regimes (WRs) are large scale recurrent and persistent circulation patterns (Vautard 
1990; Michelangeli et al., 1995, Cassou et al. 2004). They are defined by algorithms that 
classify daily atmospheric circulation fields (geopotential height, sea level pressure or wind 
speed and direction). The methodology employed is the k-means clustering as described in 
Deliverable 3.2 (Section 3.2.1 therein).  

In this Deliverable, the ability of the prediction systems to predict the WRs has been explored. 
Different WRs classifications have been tested, the different classifications are a result of 
different variables or different windows over which the clustering is applied (e.g., a separate 
set of WRs may be defined for each individual week or month in the year, or a single set of 
WRs may be defined over an entire season or year). 

 
2.3.3 Targeted Circulation Types 

Targeted Circulation Types (TCTs; formerly referred to as “Impact Patterns” or IP in D3.2) are 
constructed analogously to the weather regimes above (i.e., using k-means clustering) but 
rather than applying the clustering to gridded meteorological data, the input is instead the 
set of 29 nationally-aggregated daily timeseries of power system balance indicators (e.g., 
national demand, or demand-net-wind; see D3.2 and Bloomfield et al., in review for a full 
discussion of the method).  In this case, a single clustering is applied to the extended winter 
period (November-March) from 1980-2018. 
 

2.3.4 Hydrological Weather Regimes 
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Hydrological weather regimes (HWR) are large-scale circulation patterns, classified on the 
concept of fuzzy sets (Zadeh, 1965) which uses imprecise statements to describe a certain 
system (in this case the climate system).  Daily mean sea level pressures or geopotential 
heights are normally used as predictor to classify daily atmospheric field. By using local 
observations (e.g., daily precipitation, daily temperature) each fuzzy rule is able to describe a 
type of “average” variability of local climate in terms of the frequency and magnitude of 
observed events (normal events and extreme events) via an iteration optimization process. 
The details can be found in Bárdossy et al., 2002. 

Here, HWRs are investigated to understand whether they provide additional information to 
improve forecast skill in the hydrological seasonal forecast.  The hypothesis is that the HWRs 
may aid to select analogue years out of the historical ensembles used in the Ensemble 
Streamflow Prediction (ESP; Day, 1985) approach commonly employed in the hydropower 
sector in Sweden.  The details can be found in Olsson et al., 2016 and its application to S2S4E 
can be found in Deliverable D3.2 (Section 3.2.2 therein). 

An ensemble of daily HWR is generated over whole hindcast period and all members with 
ECMWF SEAS5 pressure field (see Deliverable D3.2 section 3.2.2 therein).  The influence of 
HWR on hydrological runoff seasonal forecast has been conducted and the results are 
reported in Section 6. There, a rainfall-runoff model, HBV model (Bergström, 1976; Lindström 
et al., 1997), has been set up and calibrated for study area, the Ume river in northern Sweden.  
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3 Employing seasonal forecasts of Euro-Atlantic 
Teleconnection indices to reconstruct surface variable 
forecasts 

3.1 Introduction 
In D4.2 we have shown that EATC indices can be skillfully predicted one month in advance. 
Additionally, in D3.2 we found that observed EATC indices are strongly correlated with 
surface variables. However, we have also seen in D4.2 that the observed relationship between 
EATC patterns and surface impacts is not accurately reproduced by seasonal prediction 
systems. This opens the door to employ hybrid dynamical-statistical methods. The idea 
consists of combining the dynamical seasonal predictions of EATC indices with the observed 
relationship between EATCs and surface variables. This method can be thought of as a 
perfect prognosis method (Wilks 2011, section 7.5.2 therein) where the observed relationship 
between EATCs and impact variables has been modeled through a multilinear regression. 

Multiple studies have related surface anomalies with teleconnections indices (NAO: Hurrell 
1995, Hurrell and Deser 2009; EA: Moore and Renfrew 2012; EA/WR: Kutiel, H., Y. Benaroch, 
2002; SCAND: Bueh and Nakamura, 2007). Several of those studies attempt to reconstruct 
surface variables through the use of EATC indices. For instance, Castro-Diez et al. 2002, 
limiting their study to the use of NAO, tried to reconstruct temperature anomalies and, more 
recently Riaz et al. 2017, using NAO and its constituent centers of action tried to reconstruct 
the climate in Germany. Rust et al. (2015) systematically studied the effect of a set of 
teleconnection patterns on European temperature and seek for a quantitative description of 
their individual contribution to temperature anomalies. In addition, northern hemisphere 
teleconnections patterns have been linked to climate anomalies in Northern America (Yu et 
al. 2019) and East Asia (Park et al.2011). However, none of those studies explores the 
possibility to combine those empirical models with seasonal predictions of the 
teleconnection indices.  

In this chapter, we try to improve the utility of seasonal forecasts by incorporating skillful 
information of the Euro Atlantic Teleconnection patterns. The methodology is presented in 
Section 3.2, the performance of the statistical multi linear regression model is presented in 
Section 3.3.  In Section 3.4, we present the skill assessment of the forecast obtained with this 
methodology (hybrid forecasts) in comparison with the raw seasonal predictions (dynamical 
forecasts) for three variables that impact the energy system (2 meters temperature, surface 
wind and surface solar radiation downward) at lead1 for the DJF season.  

 

 

3.2 Producing hybrid predictions  
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A perfect prognosis method consists of two separate steps. Firstly, a statistical relationship 
between a circulation index and a surface variable is established from observations. Then a 
dynamical forecast of the circulation index is combined with the statistical relationship to 
derive a forecast for the surface variable. In this case four circulation indices, namely the four 
EATC indices described in Deliverables D3.2 and D4.2 have been employed.  

A schematic representation of the methodology is shown in Figure 1. A statistical relationship 
between the four observed EATC indices and a surface variable (either surface wind, surface 
solar radiation or 2 meters temperature) has been obtained from ERA-Interim gridded data. 
The surface anomalies at each grid point have been expressed as a linear combination of the 
EATC indices. For each time (t) and location (x,y), the observed anomalies have been 
approximated as: 

𝐴𝑛𝑜𝑚(𝑡, 𝑥, 𝑦) ≈ 𝑎(𝑥, 𝑦) + 𝑏(𝑥, 𝑦) ∗ 𝑁𝐴𝑂0(𝑡) + 𝑐(𝑥, 𝑦) ∗ 𝐸𝐴0(𝑡) + 𝑑(𝑥, 𝑦) ∗ 𝐸𝐴𝑊𝑅0(𝑡) + 𝑒(𝑥, 𝑦) ∗ 𝑆𝐶𝐴0(𝑡) 

where NAOi, EAi, EAWRi, and SCAi are the observed EATC indices calculated following the 
methodology described in Section 2.3.1 above and in Deliverable D4.2. Least squares 
estimation allows to obtain the multilinear regression coefficients a, b, c, d, and e that 
minimize the approximation error for each grid point. Determination coefficients of each 
multilinear model fit have been used as an indication of goodness of fit. 

Ensemble forecasts of EATC indices have been obtained from DWD System2 and ECMWF 
SEAS5 following the methodology in D4.2. The four predicted EATC indices for each 
ensemble member have been employed to reconstruct an ensemble of forecasts for the 
surface variable by using the multilinear model.  
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Figure 1. Schematic representation of the process used to build hybrid dynamical-statistical 
forecasts of surface variables from the EATC forecasts. 

 

The quality of the hybrid predictions of surface variables has been assessed by computing 
Ranked Probability Skill Scores of tercile forecasts. Both the reference climatology and the 
dynamical predictions of the surface variables have been used as benchmark to understand 
the performance of this method. In both cases, the evaluation is made by comparing the 
hybrid forecasts with observed anomalies in ERA-Interim. 

 

3.3 Performance under perfect knowledge of EATCs 
A separate multilinear model has been fitted in each grid point for the three surface variables, 
and also for 500 hPa geopotential height (Z500) anomalies. The determination coefficient (i.e. 
the squared Pearson correlation coefficient) of the multilinear model fit is often used as an 
indicator of the goodness of the fit. It indicates the percentage of variability in the observed 
predictand (surface anomaly) that is explained by changes in the observed predictors (the 
EATC indices). This can also be thought of as the maximum quality that one can expect from 
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the hybrid forecasts if the state of the four EATCs is known. Figure 2 shows the determination 
coefficients for each variable and grid point for DJF. The determination coefficient is very high 
for Z500 (especially over the Atlantic), as expected, because the EATC indices were specially 
designed to represent as much Z500 variability as possible in the domain. For surface 
variables, the coefficients are still high in many European regions. For instance, 2m 
temperature can be very well determined in France and Germany from the four EATC indices, 
and surface winds can be well determined in the British Isles or north of Germany. 
Determination coefficients of solar radiation are weaker than determination coefficients of 
the previous variables, however they are useful in the Iberian Peninsula and central Europe. 
Overall, the figure shows that a good knowledge of the four EATCs could translate in skillful 
forecasts of the surface variables. 

 

Figure 2. Goodness of fit of a multilinear model to observed anomalies of 500 hPa 
geopotential height, 2m temperature, surface wind and solar radiation in DJF. 

 

3.4 Skill assessment of hybrid forecasts compared to 
dynamical predictions  

Hybrid dynamical-statistical predictions have been produced from DWD System2 and 
ECMWF SEAS5 predictions of the four EATC indices for DJF and initialized in November. The 
quality of those forecasts has been compared to the usual climatology in terms of Ranked 
Probability Skill Score (RPSS) for tercile categories. Figure 3 shows the results for the two 
systems and the three surface variables analyzed. For the three variables, the DWD system 
produces better forecasts than the SEAS5. This is directly linked with the quality of the EATC 
forecasts employed, because the observed relationship (the multilinear model) is the same in 
both cases. In D4.2 we saw that DWD SYS2 was the system with the best predictions when 
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looking at all the four EATCs. The hybrid forecasts of temperature have a positive RPSS 
almost all over Europe. For surface wind, positive skill is found mostly in the north of the 
continent, while for solar radiation the better results are seen in the Mediterranean and 
Balkans regions. It is interesting to note that regions were the statistical relationship between 
EATCs and surface variables is not good (i.e. low determination coefficients in Figure 2), have 
negative RPSS (Figure 3). This can be seen, for instance, in a narrow band crossing the 
Atlantic in the temperature panels for both systems. 

 

Figure 3. Ranked Probability Skill Score of hybrid forecasts of surface variables compared to 
the reference climatology. EATC forecasts in DJF from DWD System2 (first column) and 

ECMWF SEAS5 (second column) have been employed to reconstruct forecasts of surface 
temperature (first row), surface wind (second row) and surface solar radiation (third row).  

Forecasts issued November 1st. 

In order to understand if the hybrid predictions are better than the dynamical predictions of 
surface variables directly output by the systems, the RPSS has also been computed 
employing the dynamical predictions as the benchmark forecast to beat. Figure 4 shows the 
results over Europe for the two systems and the three variables. In this case, a positive value 
indicates that hybrid predictions are better than dynamical predictions. For temperature, the 
hybrid forecasts from both prediction systems produce better results than the dynamical 
forecasts in the Mediterranean area and Central Europe. For surface wind the improvements 
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are more modest, but can still be seen for DWD in parts of Germany, Poland, Spain, Italy and 
the Balkans. Regarding solar radiation, a strong improvement is found over the 
Mediterranean basin, eastern Europe and parts of Scandinavia. 

 

Figure 4. Ranked Probability Skill Score of hybrid forecasts of surface variables compared to 
the dynamical prediction forecasts over Europe. EATC forecasts in DJF from DWD System2 

(first column) and ECMWF SEAS5 (second column) have been employed to reconstruct 
forecasts of surface temperature (first row), surface wind (second row) and surface solar 

radiation (third row). Raw forecasts of the three surface variables have been employed as 
benchmark. Black dots indicate grid points where although the hybrid predictions are better 

than the dynamical predictions, its quality is still worse than the climatology reference. 
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3.5 Conclusions 
We attempted to improve the seasonal forecast of energy relevant essential climate variables 
by using statistical information of the Euro Atlantic Teleconnections and its relation to the 
surface variables. Our method is based on perfect prognosis method that takes advantage of 
a strong multilinear relationship between observed EATCs indices and observed impact 
variables.  

The multilinear model fit has shown that the relationship is very strong for the geopotential 
at 500 hPa all over the domain (90° W - 60°E and 50°S-50°N) in DJF, which is strictly related 
with the way the EATCs indices were computed (Section 2.3.1). More interesting are the 
results for 2 meter temperature, surface wind and solar radiation, where the multilinear 
model fit works well in many European regions (France and Germany for temperature, British 
Isles and North of Germany for wind, Central Europe and Iberian Peninsula for surface solar 
radiation). With these promising results for the fitting model, we reconstructed the surface 
anomalies for two seasonal prediction systems and benchmarked these hybrid forecasts with 
the direct variable forecasts from the systems and also with the climatology. In both analyzed 
systems, temperature predictions are improved by the hybrid methodology over most of 
Europe. Wind predictions show patches of modest improvements while solar radiation has 
improvements in southern Europe. DWD SYS2, the system with the best winter EATC 
predictions overall (D4.2), shows the best results for the three analyzed surface variables. 

 

 

  



 

GA n°776787 

27 Conditional predictability for energy-relevant variables 

4 Weather regimes for wind forecasting 

4.1 Introduction 
To understand the amount of wind speed variability that can be explained in terms of 
changes in the frequency of occurrence weather regimes, monthly wind speed has been 
reconstructed from the monthly impact maps of each WR (as described in D3.2) and the 
observed frequency of occurrence of each WR (as described in D4.2). This study can be 
defined as a ‘perfect model approach’ as it is based on reanalysis data and aims to provide 
information on the role of the WRs as a source of predictability of wind speed. Several 
aspects of the reconstructed fields are analysed in comparison with the wind speed directly 
obtained from the reanalysis: Pearson correlation of the mean wind speed, the ratio between 
standard deviations, Pearson correlation of the 95th percentile and mean wind speed bias. The 
JRA-55 reanalysis has been employed as reference (Kobayashi et al. 2015). Since this 
reanalysis is produced in near-real time it is useful for a posteriori analysis of WRs impact on 
particular anomalous wind events, which is sometimes required by energy companies to 
understand what flow configuration is behind particular events. An intercomparison of WR 
patterns as produced from different reanalyses can be found in Cortesi et al.(2019) as well as 
more details on the work presented in this section. A similar reconstruction using ERA-Interim 
reanalysis can be found in Torralba (2019).  

 

4.2 Method 
The reconstruction has been performed in a leave-one-out cross-validation framework, for 
which the year to be reconstructed has not been considered to estimate the observed impact 
of WR on 10-m wind speed. Firstly, the observed impact Ir,m,y (lat,lon) of a given regime r in 
month m and year y on wind speed anomalies was measured by averaging the normalised 
wind speed anomalies wr,m (d, lat, lon) for all days d associated to regime r and month m 
during 1981-2016, excluding year y: 

𝐼O,4,P	(𝑙𝑎𝑡, 𝑙𝑜𝑛) =
:
Q
∑ 𝑤O,4	(𝑑, 𝑙𝑎𝑡, 𝑙𝑜𝑛)Q
69:                                                (1) 

with N the number of days belonging to regime r and month m during 1981, … y-1, y+1, …, 
2016. 

Subsequently, the WRs were employed to reconstruct the mean monthly wind speed 
anomaly wReconm,y (lat,lon) as the linear combination of the WRs monthly impact Ir,m,y and the 
WRs frequencies: 

𝑤𝑅𝑒𝑐𝑜𝑛4,P	(𝑙𝑎𝑡, 𝑙𝑜𝑛) =
:

QT,U
∑ 𝐼O,4,P(𝑙𝑎𝑡, 𝑙𝑜𝑛) ⋅ 𝑁O4PW
O9:                                       (2) 

being Nrmy the number of days belonging to the weather regime r, month m and year y and 
Nmy the total number of days in month m and year y. 
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To assess the wind speed reconstruction, anomalies of reconstructed monthly mean wind 
speed (wRecon) were compared to the JRA-55 wind speed over the period 1981-2016 with 
four different metrics. The first one is the Pearson correlation between the reconstructed and 
observed time series. It ranges from -1 to 1, values closer to 1 indicate the reconstructed 
value is similar to the observed one. The second metric is the standard deviation ratio 
between the reconstructed and observed series and it ranges from 0 to 1, with values close to 
1 indicating a high similarity between the variability of the reconstructed and observed wind 
speeds. The third one is the Pearson’s correlation between the reconstructed and observed 
time series of the 95th percentile of 6-hourly wind speed and it ranges from -1 to 1. The last 
metric is the difference between the mean of reconstructed and original wind speed time 
series, therefore a difference equal to zero shows a perfect agreement between the means of 
the reconstructed and original wind speed anomalies.  

The ability to reconstruct the highest wind speeds is studied by analysing the 95th percentile 
of the distribution, calculated in cross-validation with a similar approach to that used to 
reconstruct the time series of the mean wind speed. However, in order to improve the 
robustness of the measure of the 95th percentile thresholds, they were not reconstructed 
from the daily wind speed anomalies but from the 6-hourly wind speed anomalies instead. 
Notice that in this case, as the k-means clustering was still performed with daily MSLP 
anomalies, all the four 6-hourly wind speed values within the same day were associated to 
the same daily WR. 

 

4.3 Results 
Figure 5 shows the four aspects analysed for the selected months: January, April, July and 
October. The top row of Figure 5 shows correlations between observed mean wind speed 
and the one reconstructed by WRs. The highest correlations are found in January and in 
north-western Europe, particularly in the British Isles, Spain, Portugal, Denmark and in the 
northern part of France and Germany. Lowest correlations are measured in eastern Europe, 
North Africa and Middle East. In the North Sea, a key region for European wind power 
generation, correlations are often positive and in January are always above 0.5. The second 
row of Figure 5 presents the ratio between the reconstructed and observed wind speed 
standard deviation. It is always lower than 0.6, and it has a spatial distribution very similar to 
that of the mean wind speed correlations previously described. The ability to reconstruct not 
only the mean values but also the tails of the distribution is shown by correlation of the 
observed and reconstructed 95th percentiles, as shown in third row. Correlation values 
present a similar spatial distribution to those of the mean wind speed (first row), even though 
positive correlations are ~0.1 lower, while negative ones are ~0.1 higher (i.e.: less negative 
than correlations of the first row). Finally, the mean wind speed bias is shown in the fourth 
row of Figure 5. It is generally lower than 0.15% of mean wind speed. Moreover, the bias is 
never significant (for a paired t-test with a 90% confidence level). Figures for the other 
months can be found in Cortesi et al. (2019). 
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The more interesting feature of Figure 5 from the point of view of wind energy generation, is 
that it identifies countries in in which WRs play a dominant role on wind speed variability, like 
the North Sea region, but also other areas like the Iberian Peninsula, Iceland, northern 
Scandinavia and to a lesser extent the Gulf of Lion (southern France), the Black Sea and the 
Aegean Sea (between Greece and Turkey). In such regions, during many months of the year a 
large part of wind variability can be attributed to the change of the monthly frequencies of 
occurrence of the WRs, a key factor that could be exploited for the development of tailored 
products for the wind energy sector. Some of these regions, particularly northern 
Scandinavia, southern Spain and the Aegean Sea, are also characterised by high average 
yearly wind speeds (7-10 m/s) and are far enough from the North Sea to present positive 
wind anomalies when they are negative over central Europe. Thus, they might play an 
important role in future electricity generation, by reducing the high intermittency of total 
produced European wind power. 
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Figure 5. Reconstructed 10-m wind speed for the months of January, April, July and October. 
Four error metrics are shown from top to bottom, respectively: the temporal correlation 
between the time series of the reconstructed and observed monthly mean wind speed 

anomalies, the ratio between the standard deviations of the reconstructed and observed time 
series of monthly mean speed anomalies, the correlation between the reconstructed and 

observed monthly 95th percentile of wind speed anomalies, and the mean wind speed bias. 
These results are based on the WRs and 10-m wind speed from the JRA-55 reanalysis. 

 

4.4 Conclusions 
This analysis investigates the potential of WRs to reconstruct wind speed in Europe. It 
complements the impact of each single WR on wind speed and it is critical to identify areas 
and months where WRs can be considered sources of predictability of wind speed.  
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The area around the North Sea, the UK, northern and western Europe appear to have wind 
speeds most impacted by the large scale circulation with highest correlations for both mean 
values and the 95th percentiles. This result is important since these are areas of large wind 
generation. The time of the year when better reconstructions are achieved is November to 
March.  

There are regions as northern Scandinavia, southern Spain and the Aegean Sea with high 
average yearly wind speed and where the overall influence of WRs on windspeed is moderate 
to high. Moreover, due to their distance from the North Sea, wind generation in these 
regions is not negatively affected by the passage of anticyclones over central Europe, where 
most of the European wind power generation in concentrated. Thus, these regions may play 
an important role in future electricity generation, by reducing the high intermittency of total 
produced European wind power, as already demonstrated by Grams et al. (2017).  

This section has shown that there are European areas where there is potential to use the large 
scale patterns as predictors for surface wind speeds in long range predictions. However, the 
limitations still lie in the poor predictability of the WRs beyond 1 month. 
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5 Weather Regime and Targeted Circulation Types for 
European national-scale energy balance indicator 
forecasts at subseasonal timescales during winter 

5.1 Introduction 
In this Chapter we investigate the potential for both WRs and TCTs to be used to produce 
subseasonal forecasts of national scale energy balance indicators for lead weeks 1-4. The 
chapter begins by outlining the methods used to get national forecasts of electricity demand 
and wind power generation as well as the WRs and TCTs (Section 5.2) from the hindcast 
simulations. Following this a set of methods are discussed which are used to assess the 
predictability of the WR and TCT methods (Section 5.4). The potential of the methods to be 
used in a perfect forecast model setting (similar to that discussed in Chapter 4) are shown in 
Section 5.5. The ability of the ECMWF and NCEP hindcasts to predict demand-net-wind 
(DNW) in lead weeks 1 to weeks 4 is assessed in Section 5.6. Concluding remarks and 
avenues for future research are presented in Section 5.7. 

 

5.2 Forecast methodology for national energy indicators  
A brief overview of the country aggregate demand and wind power capacity factor models is 
given below. Full details of the country aggregate models can be found in Bloomfield et al. 
(submitted) and S2S4E Deliverable D3.2 Annex A. 

 
5.2.1 Meteorology-to-power conversion models: ERA5 

Electricity demand is calculated with a country-level multiple-linear regression model 
containing parameters to capture both meteorological and human behaviour. Each country 
has a unique regression model, which is trained on two years of measured demand data 
(2016-2017) from the ENTSOe transparency platform (ENTOSe, 2019), and is then applied 
retrospectively to the full ERA5 reanalysis period (1980-2018). Two versions of the model 
output are created, the “full” demand (using all of the available regression parameters) and 
the “weather-dependent” demand (which includes only the weather-dependent terms, 
heating-degree-days and cooling-degree-days – i.e., removes the impacts of the day-of-week 
behavioural patterns and long term socio-economic trends). In this chapter the weather-
dependent model is used to highlight the meteorologically driven power system variability.  

Wind power capacity factor is calculated based on the methodology of Lledó, et al. (2017) 
and Lledó et al. (2019) which calculates gridded capacity factor using three different power 
curves corresponding to three turbine classes, and is then aggregated to country level 
(similar to Cannon et al. 2015 and Bloomfield et al. 2016). To calculate country aggregate 
capacity factor, firstly the most appropriate wind turbine for each grid box is calculated based 
on the 1980-2018 mean ERA5 100m wind speed. Previous work in Deliverable D4.1 
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highlighted that ERA5 produces anomalously low 100m wind speeds over large regions of 
Europe; therefore prior to use within the wind power model the ERA5 100m wind speeds are 
bias corrected to the global wind atlas (Global Wind Atlas, 2019). The country aggregate 
capacity factor is calculated by passing bias corrected 100m wind speeds through each curve 
and aggregating based on the locations in installed turbines taken from thewindpower.net 
(2019).  

 
5.2.2 Meteorology-to-power conversion:hindcasts 

Hindcasts of energy demand and wind power are calculated from hindcasts of 2m 
temperature and 10m wind speed. Hindcasts from both ECMWF and NCEP are used from the 
S2S database (Vitart et al., 2017). The ECMWF hindcasts cover the years 1996 to 2015, and the 
NCEP hindcasts cover the years 1999 to 2010. Only hindcasts initialised in the months 
November to March are used. Since the wind power model requires 100m wind speed, the 
10m wind speed is raised to 100m using a 1/7 power law (100m winds are not available from 
the S2S database). 

Before the energy variables are calculated, the hindcasts of 2m temperature and 100m wind 
speed are bias corrected using ERA5 as the reference. The ERA5 100m wind speed has itself 
been bias corrected first (see Section 5.2.1). A separate bias correction is applied for each 
hindcast start day of the year and each lead time. A leave-one-out scheme is employed in 
which each hindcast is omitted from the set of hindcasts used to calculate its correction 
parameters. There is both a mean correction and an optional variance inflation. The mean 
correction ensures that the hindcast mean agrees with the ERA5 mean. The variance inflation 
employs the scheme described by Doblas-Reyes et al. (2005), which ensures not only that the 
hindcast variance agrees with the ERA5 variance, but also that the correlation between the 
hindcast and ERA5 is preserved. 

The bias corrected meteorological variables are converted to energy variables using the 
models described in Section 5.2.1 with the slight difference that the wind power capacity 
factor is converted to wind power at the end. The regression coefficients and turbine choices 
applied to the hindcasts are those derived from ERA5. 

The ECMWF hindcasts are issued twice a week and have 11 ensemble members, whilst the 
NCEP hindcasts are issued daily and have 4 ensemble members. In this chapter, in order for a 
fair comparison between the ECMWF and NCEP hindcasts, a lagged NCEP ensemble is 
constructed at the energy variable level by combining the NCEP hindcasts initialised on 
ECMWF start days with the NCEP hindcasts initialised on the previous two days, giving a 12-
member ensemble. This method is used in order to mirror that used for the S2S4E 
demonstrator. 

 

5.3 Weather regimes and targeted circulation types (TCTs)  
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Weather regimes: Weather regimes are calculated closely following the methods outlined in 
Deliverable D3.2 (using the method of Cassou 2008). The k-means clustering algorithm is 
applied to area-weighted gridded November-March daily-mean 500hPa geopotential height 
anomalies from 1980-2018 over the domain 90W-30E, 20N-80N to obtain four circulation 
types. The clustering is performed in empirical-orthogonal-function (EOF) phase space to 
speed up the computation (14 modes retained, corresponding to 90% of variance).  The 
patterns calculated from ERA5 match those found in other studies (Cassou, 2008; Van 
Der Wiel 2019).  This method used here matches that in D4.2 (i.e., is an update to the method 
originally described in Deliverable D3.2) and provides a consistent single set of regimes 
relevant to the whole period November-March, rather than changing patterns each month.  
This enables easier computation and provides a larger amount of data for skill assessment of 
the hindcasts which only have an 11 year common period (1999-2010).  

Targeted Circulation Types - definition: TCTs are constructed analogously to the weather 
regimes (i.e., using k-mean clustering) but with input time-series corresponding to daily maps 
of an impact variable rather than a gridded meteorological data set.  In the present 
application this impact corresponds to national power system indicators (e.g., national 
demand) for each of 29 European countries over the extended winter November-March from 
1980-2018. Each power system variable (i.e., demand or residual load) is normalised prior to 
the calculation of the TCTs such that a value of +1 in the resulting time series therefore 
indicates a +1 standard deviation departure above the norm for that day of the year for that 
country (see Deliverable 3.2 for further details).    

Targeted Circulation Types – allocation in NWP forecasts: In order to allocate the TCT 
patterns in the hindcasts the 500hPa geopotential height composite from each TCT is 
calculated and the TCTs are then each day is assigned to the Z500 pattern with minimum 
Euclidean distance (a similar approach is used for WR assignment in operational forecasting). 
In the analysis below, the ensemble mean Z500 is used (rather than classifying individual 
ensemble members).  This was shown in Deliverable 4.2 (chapter 4) to provide the highest 
success ratio for both WR and TCT assignment in both the ECMWF and NCEP hindcasts, 
though performance degrades at longer lead times (beyond 1-2 weeks).  

 

5.4 Pattern forecasting methodologies 
To assess the performance of TCT-based forecasts, a number of forecast methods are 
defined.  In each case, the target predictand is the European national weekly-mean 
normalised demand-net-wind (DNW), though this process has also been completed for 
normalised demand forecasts (not shown as the results are similar to those for DNW). The 
methods are shown schematically in Figure 6 and a description of each is given below: 

1. Grid point forecast: A direct forecast of national-aggregate DNW using gridded 
surface weather variables from the NWP forecast, (e.g., the NWP forecast surface data 
for week 3 is converted into a DNW estimate for week 3 following the methods 
described in Section Error! Reference source not found.). Grid point forecasts are 



 

GA n°776787 

35 Conditional predictability for energy-relevant variables 

included in this chapter as a benchmark to indicate how well pattern-forecast based 
methods perform against raw grid-point methods (the general performance of grid-
point forecasts has already been assessed in Deliverable 4.1). 

2. Climatology: The weekly-mean climatology of DNW is calculated from the national 
level normalised DNW data from ERA5.  This seasonally-varying climatological mean 
can be interpreted as the simplest “no new information” forecast. 

3. Persistence: This is calculated by taking the weekly average of the seven days of 
“observed” DNW prior to the forecast intitialisation date (i.e., it effectively corresponds 
to persisting last week’s weather/DNW forward to the relevant forecast validity time).  

4. Persistence 52: This is calculated by using the weekly averages from the previous 
year of ERA5 for DNW and using this as the weekly-mean forecast for lead weeks 1-4. 

5. Dominant WR: This is the WR that occurs most frequently during the forecast week 
(i.e. the forecast’s modal regime from the seven day period). To calculate this forecast, 
each day’s ensemble-mean Z500 anomaly (from the NWP model’s lead dependent 
seasonally-varying climatology) is first assigned into one of the four canonical WR 
patterns (themselves defined from ERA5).  Once a dominant WR is determined, the 
weekly mean DNW forecast is given by the corresponding the ERA5 DNW associated 
with that WR.  

6. Mixed Weather regime: This forecast is similar to the “dominant WR” but 
corresponds to weighting the ERA5 surface impact responses of the WRs by the 
number of times they are forecast to occur in the target week. This is calculated from 
the ensemble-mean hindcast of Z500, with weightings giving to each of the seven 
days in the forecast week. 

7. Dominant TCT: This is calculated in the same way as dominant WR but using the 
ERA5 TCT Z500 patterns and corresponding DNW responses.  

8. Mixed impact pattern: This is calculated in the same way as mixed WR but using the 
ERA5 TCT Z500 patterns and corresponding DNW responses.  
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Figure 6. Schematic description of the forecast process (as presented in Chapter 5). 

 

In order to assess the skill of these methods of forecasting the Mean Absolute Error (MAE) 
and Anomaly Correlation Coefficient (ACC) are used. These two metrics are chosen as the 
ACC gives a sense of if the methods are able to forecast the correct sign of the DNW 
anomaly, whereas MAE provides more information on the magnitude of the error associated 
with the forecast.  

The analysis focuses on the skill of the European total DNW forecast, as well as a set of six 
case study countries which have been chosen due to (a) their geographic diversity, and (b) 
their contrasting magnitudes of DNW anomalies in both the weather regimes and TCTs (i.e., 
some case study countries exhibit a strong response to WRs/TCTs whereas others are rather 
weaker; see Deliverable 4.2 Chapter 5 for more details).  

 

5.5 A perfect forecast model of National DNW 
Section 5.5 first assesses the ability of the methods in a perfect forecast model using the 
ERA5 data. (i.e. if we have a perfect forecast of the WRs/TCTs, how well are we able to capture 
the DNW response?).   Following this the ECMWF and NCEP hindcasts are assessed in Section 
5.6. 
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Figure 7. ERA5 DNW perfect forecast tests for the European total (a and c) and six case study 
countries (b and d). (a-b) Mean Absolute Error (MAE) (c-d) Anomaly Correlation Coefficient 
(ACC). Error bars show significance of results based on 2000 bootstrapped samples of each 

year of data. 

 

Figure 7 shows the ability of the methods outlined in Section 5.4 to forecast national 
normalised DNW if the WR/TCT were known. These tests therefore demonstrate the 
maximum potential of the WR/TCT based forecasting methods.  Focusing first on the 
European total, we see that both the WR and TCT based methods are able to outperform 
both a climatological and persistence forecast. The climatology forecast is significantly more 
skillful than persistence (for MAE, panel a) so this is taken as our benchmark against which 
the WR/TCT methods are tested. The Mixed WR and mixed TCT method perform better than 
the Dominant weather regime and Dominant TCT method in terms of both MAE and ACC. In 
general, however, both the WR/TCT methods dramatically outperform climatology (and 
persistence), suggesting a potential use for subseasonal forecasting – provided NWP 
forecasts are themselves able to assign the correct WR or TCT.  
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Similar results are seen for the six individual case study countries with marked improvements 
over climatology when using TCTs in Germany, France and the United Kingdom (UK) and 
some improvements in the other countries. It is noticeable when all 29 countries are 
examined that the largest potential improvement for the WR/TCT methods appears to be in 
Central Europe. This could be due to this being geographically where the bulk of the 29 
countries are located (due to a number of small countries being located here), compared to 
the larger, more sparsely located Southern and Northern European countries. The WR and 
TCT methods are not equally skillful in all countries. For example, in Spain and Sweden the 
WRs have higher ACC and lower MAE than the TCT patterns assigned on Z500 (see Figure 5.1 
subplots b and d). Whereas in most other countries the TCT method offer greater potential 
improvements compared to a climatological forecast than the WRs. 

A key limitation with TCTs, however, lies in the ability to allocate forecast days to particular 
patterns.  Here, a method resembling the WR method (Cassou 2008) is adopted based on the 
use of Z500.  In particular, each TCT (defined by applying clustering algorithms to maps of 
national-aggregate DNW) is associated with a composite Z500 circulation pattern: it is this 
Z500 circulation pattern (rather than DNW data directly) which is used to select which TCT is 
said to be occurring on any given forecast day.  As Z500 does not uniquely constrain the 
surface meteorological conditions (and hence the DNW), this leads to some days being 
“misclassified” in terms of the TCT patterns assigned (see Deliverable D4.2).  The result of this 
is that the skill levels achieved using the Z500 TCT assignment (shown by the red bars in 
Figure 7) are comparable to (and not much better than) the skill levels achievable from the 
original WR patterns in most countries.  It is, however, noted that the choice of using Z500 for 
TCT pattern assignment is arbitrary.  As such, other meteorological fields could be considered 
or included in order to achieve “better” classification system.  In the limiting case of a perfect 
classification scheme (whereby all forecast days are correctly assigned to TCTs), the 
performance is significantly enhanced, as shown by the purple bars in Figure 7.   

In summary, in a perfect forecast simulation the WR and TCT methods provide more skill than 
both climatology and persistence forecasts for European and national, normalised DNW. The 
mixed TCT method is generally the best performing of all of the method but the results are 
country dependent and, in the case of TCTs, highly dependent on accurately assigning 
forecast days to the correct TCT types. 

 

5.6 Subseasonal forecasts of DNW 

5.6.1 The impact of variance inflation on forecast skill 

Two methods of calibration have been implemented on the essential climate variables from 
the hindcasts used to create national demand and wind power generation. The first 
corresponds to the standard approach of a lead time dependent mean correction, whereas 
the second combines the lead time dependent mean correction with variance inflation (see 
Section 5.2 for more details). Figure 8 shows the impact of including variance inflation on the 
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MAE for a whole European forecast of normalised DNW for weeks 1-4.  In all cases the more 
sophisticated bias correction scheme including variance inflation leads to increased MAE (i.e., 
less skill). The grid point forecasts are more sensitive to the calibration scheme (especially in 
lead weeks 1 and 2) compared to the pattern-based methods, though all forecasts methods 
become more strongly affected by the inclusion of variance inflation at longer lead times.   

As the inclusion of variance inflation leads to increased forecast errors, for the remainder of 
this chapter the “standard” calibration is used (i.e., forecasts are subjected to a lead-time 
dependent mean bias correction but not variance inflation). 

 

Figure 8.  Difference in Mean Absolute Error (MAE) between forecasts of European total 
DNW with and without variance inflation included in the bias correction (see Section 5.2 for 
details of the method). Positive numbers imply that variance inflation has resulted in a larger 
MAE (and therefore has degraded forecast quality).  

 
5.6.2 WR and TCT pattern forecasts in subseasonal models 

Figure 9 shows the anomaly correlation coefficient for the various forecasting methods 
described in Section 5.4 for lead weeks 1-4, for Europe, and the three Central European case 
study countries. All results are in generally good agreement between the ECMWF and NCEP 
forecast systems, however there tends to be moderately more skill in the ECMWF system.  

Focusing first on the European total skill (Figure 9 a and b), we see that for all lead times the 
grid point forecast provide skill relative to a pure climatological forecast (i.e., ACC values are 
always positive) and, for most lead times, the grid-point forecast is the most skillful forecast 
method.  However, the skill of the grid-point method decays rapidly with lead time and the 
pattern-based methods (both WR and TCT) have a comparable (or better) performance to the 
grid-point forecast at longer lead times.  In the NCEP system, greater skill than the grid point 
forecast is found for the WR and TCT methods in week 3 and 4 (Figure 9b) whereas for the 
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ECMWF system the pattern methods have very limited success (only the mixed WR method in 
week 4 outperforms the grid-point forecast; Figure 9a).  Additionally, all the forecast methods 
outperform persistence forecasts at all lead times and the “mixed-pattern” methods 
outperform the “dominant-pattern” method in general (as seen in the perfect forecast 
simulations, Figure 7).  At the gross pan-European scale, the WR and TCT methods offer only 
modest benefits over direct conversion of grid-point surface weather variables into energy-
prediction at longer lead-times. 

Greater benefit of the pattern-based approaches is, however, found if individual countries are 
assessed, particularly those in a zonal band across the middle of Europe (see Figure 9c-h).  In 
France, Germany and the UK, the pattern-based methods (WR and TCT) already have 
comparable skill to the grid-point forecast in week 2, and either match or outperform the 
grid-point forecast at longer leads.  The performance of the WR and TCT methods is similar 
but, as noted above (Section 5.5), the skill of the TCT forecast could be further improved with 
a “better” classification system creating a stronger large-scale constraint on the climate than 
provided by Z500 alone (e.g., in the “perfect pattern forecast” assessment the ACC was found 
to be ~10-50% higher for the “perfect classification” scheme compared to assignment using 
Z500; Section 5.5 and Figure 7). 

For completeness Figure 10 shows the ACC for the other three case study countries, located 
in Northern, Eastern and Southern Europe. There is generally less skill in these countries than 
seen for the Central European countries, perhaps suggestive that the construction of the TCTs 
(which equally weight the nationally-aggregated DNW timeseries) emphasizes regions with 
clusters of small countries.  There are areas/lead-times where the WR/TCT methods have 
more skill than the grid point forecast (e.g., Sweden lead week 3 and Spain lead week 4), 
indicating that there may be opportunities to exploit pattern based forecasts, but it is clearly 
important to evaluate this on a case-by-case basis and (for TCTs) to ensure that the initial 
design of the weather patterns is appropriate. 
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Figure 9.  Anomaly correlation between normalised DNW forecasts and ERA5.  ECMWF (left) 
and NCEP (right). (a-b) European total (c-d) France (e-f) Germany (g-h) United Kingdom.  
Note that, by construction, a climatological forecast has an ACC of zero for all lead times. 



 

GA n°776787 

42 Conditional predictability for energy-relevant variables 

 

 

Figure 10.  Anomaly correlation between normalised DNW forecasts using ERA5 and ECMWF 
hindcasts (left) and NCEP hindcasts (right) for lead weeks 1-4. (a-b) Sweden (c-d) Romania (e-
f) Spain.  Note that, by construction, a climatological forecast has an ACC of zero for all lead 
times. 
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5.7 Conclusions  
The preceding sections have assessed the performance of pattern-based methods (WR and 
TCT) to produce skillful forecasts of winter time European-total and national-total DNW (and 
demand; not shown), providing a benchmark of their performance against alternative 
methods (grid-point, climatology and persistence).  At short lead times (week 1 to 2) and for 
larger domains (whole-Europe) the most skillful forecast is typically provided by grid-point 
methods, i.e., using surface meteorological variables and converting them to DNW estimates.  
However, at longer lead times, the pattern-based methods can begin to outperform grid-
point methods.  In all cases, grid-point and pattern-based methods are typically better (or no 
worse) than climatological or persistence forecasts.  Several points relevant to developing a 
practical application of the pattern-based methods are, however, worthy of note. 

Firstly, regarding NWP forecast bias correction for surface weather variables.  The method of 
bias correction used to calibrate the essential climate variables that are used as inputs for the 
demand and wind power models results in significant differences in forecast skill. 
Interestingly the more sophisticated bias correction method (including variance inflation) 
appears to result in a reduction in skill at all lead times.  The reason for this reduction is not 
known at the present time but suggests that application of complex bias-correction and 
calibration schemes should be undertaken with great care. 

Secondly, the assessment in this chapter focusses primarily on the simplest skill metric 
(anomaly correlation co-efficients): essentially a forecast of whether DNW is above or below 
normal.  More complex metrics (e.g., MAE, or RMSE) are associated with generally lower skill 
scores (for all forecast methods).  The existence of ACC skill in forecast weeks 3 and 4 does 
not therefore imply skill across these different metrics. 

Thirdly, the skill by all the forecast methods is far from uniform across the European domain 
and between NWP forecast systems, suggesting careful assessment is needed on a case by 
case basis.  It can also be observed that large-area spatial averaging does not always lead to 
enhanced forecast skill for pattern-based methods (e.g., where the pattern corresponds to 
signals of opposing across the domain).  An interesting area for investigation is therefore the 
ability of grid-point vs pattern-based methods in forecasting the “structure” of energy 
anomalies across Europe (i.e., the spatial imprint of the weather) as opposed to viewing each 
country’s DNW time series as independent. 
Finally, while the performance of the WR and TCT approaches (where TCTs are assigned using 
a single field representing the atmospheric circulation, Z500) was found to be broadly similar, 
there are opportunities to improve TCT-based forecast skill through improved pattern-
assignment methods (i.e., the method through which an NWP-forecast day is assigned into a 
particular TCT pattern).  The mid-tropospheric circulation (represented by Z500) appears to 
be a fairly weak constraint on the surface weather and additional atmospheric variables (e.g., 
temperature in the lower troposphere) may therefore provide opportunities for more refined 
classification schemes.  
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6 Hydrological catchment-scale forecasting using 
hydrological weather regimes 

 

6.1 Introduction 
The aim of our work is to test hydrological seasonal forecasts that make use of hydrological 
weather regimes (HWR) to improve forecast skill. The hypothesis is that HWR information can 
be used to select analogue years from an ensemble of historical precipitation (P) and 
temperature (T) data with which to force a hydrological model to give an improved seasonal 
forecast of reservoir inflows (e.g. Foster et al. 2018; Olsson et al., 2016). The predominant 
seasonal forecasting method employed by the hydropower sector in Sweden is the Ensemble 
Streamflow Prediction (ESP) approach (Day, 1985). ESP uses an ensemble of historical 
observations of P and T, over the forecast period, to force a hydrological model resulting in a 
seasonal forecast which has a climatological-like evolution from the initial conditions. There 
have been attempts to improve on this approach, however it has been shown to be difficult 
to improve on (e.g. Foster et al. 2018; Olsson et al., 2016). This work compares cross validated 
hindcasts of inflows to 12 hydropower reservoirs in the Ume River system to determine if 
using HWRs, calculated from ECMWF seasonal forecasts, can improve the skill of seasonal 
forecasts of inflows to hydropower reservoirs.  

 

6.2 Experimental Setup 
To assess forecast skill, two sets of cross-validated hindcasts of seasonal inflows (Q) were 
made for 12 different hydropower reservoirs in the Ume River system in Northern Sweden. 
The first set was made using the well-established Ensemble Streamflow Prediction approach 
and the second set was made using a weighted ESP approach. 

For the ESP hindcasts, a well-calibrated setup of the rainfall-runoff model HBV (Hydrologiska 
Byråns Vattenbalansavdelning; Bergström, 1976; Lindström et al., 1997) is initialized by 
running it up to the forecast issue date using observed P and T. This is done to ensure that 
the HBV model states reflect the current hydrological conditions in the basin with respect to 
e.g. streamflow, snow pack and soil moisture at the time of the forecast initialisation. This 
properly initialised model is then forced with an ensemble of historical T and P which covers 
the period from the forecast issue date and extending seven months forward. The same 
procedure was followed for the analogue or weighted ESP hindcasts. However instead of 
using the historical ensemble of P and T, a weighted historical ensemble was used to force 
the model. 

The weighted historical ensemble was made by identifying analogues from the historical data 
and replicating their timeseries until the number of members in the ensemble matched that 
of the historical ensemble and then the two ensembles were pooled together. This gives an 
ensemble that still has the same spread as the historical ensemble but is weighted towards 
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the identified analogues. The analogues are selected by comparing the two leading HWRs in 
terms of occurrence frequency over the forecast period with the leading HWRs over the same 
period from the years in the historical period. We defined an analogue year to be one where 
the two leading HWRs over the forecast period are the same as those predicted in the 
seasonal forecast. In the case where no analogues are found, the weighted analogue 
approach uses the same forcing data as the ‘standard’ ESP i.e. the full historical ensemble. 

The HWRs were classified using a fuzzy-rule-based classification to determine the circulation 
patterns common to the region during in the one to seven months following the forecast 
initialisation date (i.e., from month 0 up to month 6 of the NWP forecast) . An analogue year 
is defined as any historical year for which the two dominant HWRs in the same one to seven 
months period are the same as those found for the year in question (see Deliverable 4.2 for 
more information). 

The evaluation first evaluates the naive skill of the standard ESP approach, this is to establish 
that this approach is skillful and a worthy benchmark for the new approaches. Afterwards, the 
seasonal forecasts were evaluated with skill scores, using the ESP approach as the benchmark, 
to investigate the skill of the new approaches. Two validation metrics were used in this work 
(Table 2). The mean absolute error skill score (MAESS) is a skill score that quantifies the 
relative forecast error against a reference forecast. The frequency of years (FY+) is a metric 
that quantifies how often the forecast outperforms a reference forecast. The validation 
metrics are bootstrapped 5000 times to ensure robust results. 

 
Name Equation Description 

Mean 
absolute error 
skill score 
(MAESS)  

𝑴𝑨𝑬𝑺𝑺 = 𝟏 −
𝑴𝑨𝑬𝒇
𝑴𝑨𝑬𝒓

 

where f is the modelled forecast and r reference or benchmark 
forecast. 

Measure of the model’s 
general performance; it 
quantifies the relative 
forecast error against a 
reference forecast.  

Frequency of 
Years (FY+) 𝑭𝒀b =

𝟏𝟎𝟎
𝒏 ,𝑯𝒚

𝒏

𝒚9𝟏

, 

where y is the timestep and n is the total number of timesteps. H 
is the Heaviside function defined by 

𝐻P = h
0, 	𝐴𝐸O

P 	< 	𝐴𝐸k
P

1, 	𝐴𝐸O
P 	> 	𝐴𝐸k

P	, 

where AE is the absolute error, y is the timestep, f is the 
modelled forecast, and r reference or benchmark  forecast. 

Measure of the model’s 
general performance; it 
quantifies how often the 
forecast outperforms a 
reference forecast. 

Table 2.  The validation metrics used to evaluate performance. The threshold for skill is 50% 
for FY+ and 0 for all the other metrics. 

 

The hydrological model used in this experiment is the Hydrologiska Byråns 
Vattenbalansavdelning hydrological model (HBV). It is a semi-distributed conceptual rainfall-
runoff model which includes numerical descriptions of hydrological processes at the basin 
scale. The general water balance in the HBV-96 model can be expressed as: 
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𝑃 − 𝐸 − 𝑄 =
𝑑
𝑑𝑡
(𝑆𝑃 + 𝑆𝑀 + 𝑈𝑍 + 𝐿𝑍 + 𝐿𝑉) 

where, 

P = precipitation  E = evapotranspiration 

Q = runoff   SP = snow pack 

SM = soil moisture  UZ = upper groundwater zone 

LZ =lower groundwater zone LV = lake volume 

 

 

Figure 11.  Schematic presentation of the HBV-96 model for a single basin (Lindström et al., 
1997). 

The model is normally forced with daily observations of P, T and monthly estimates of 
potential evapotranspiration. The model consists of subroutines for meteorological 
interpolation, snow accumulation and melt, evapotranspiration estimation, soil moisture 
accounting procedure, routines for runoff generation and finally, a simple routing procedure 
between sub-basins and in lakes. Basins with considerable elevation ranges can be 
subdivided into elevation zones which, if needed, can be further divided into different 
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vegetation zones (e.g., forested and non-forested areas). These subdivisions are made for the 
snow and soil moisture routines only. The model structure of HBV-96, with the most 
important characteristics, is presented schematically in Figure 11. For a more comprehensive 
model description readers are referred to Lindström et al. (1997). 

 

 

6.3 Case study: Ume River 
As a benchmark, the skill of the “standard” ESP method is calculated (Table 3) using 
climatology as the reference.  In general, that the ESP outperforms climatology at predicting 
seasonal inflows to the reservoirs, both with respect to error and frequency. These results, 
while modest, have been shown to be very difficult to improve on.  

 
  FY+     MAESS 
Jan 50   Jan -0.054 
Feb 51   Feb 0.021 
Mar 56   Mar 0.099 
Apr 56   Apr 0.096 
Maj 61   Maj 0.110 
Jun 61   Jun 0.170 
Jul 56   Jul 0.089 
Aug 52   Aug 0.037 
Sep 61   Sep 0.074 
Oct 56   Oct 0.064 
Nov 51   Nov 0.004 
Dec 61   Dec 0.123 

Table 3.  Bootstrapped (n=5000) FY+ and MAESS, aggregate of all reservoirs, for the standard 
ESP approach (without use of HWR information) with climatology being used as the 

reference. The threshold for FY+ skill is 50% and MAESS skill is 0. Red shading indicates 
results below the skill threshold and blue indicates results above the skill threshold. 

 

To assess the skill of the new weighted analogue approach, the validation metrics are 
calculated using the ‘standard’ ESP as the reference. The FY+ results (Table 4) show the 
frequency with which the weighted analogue approach outperforms the ESP approach. The 
rows are the months when the hindcasts were initialized.  The columns indicate the forecast 
months following the initialization date for which the HWR were defined (so, month 0 
indicates the HWR were defined on the month 0 forecast data alone, whereas month 5 
indicates the HWR were defined in based on the data from forecasts months 0, 1, 2, 3 and 4).  

The MAESS results (Table 5) show how the weighted analogue approach performed against 
the ESP with respect to hindcast error. 
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  HWR classification period (months) 
  0 1 2 3 4 5 6 
Jan 53 45 54 56 59 53 38 
Feb 38 38 38 38 42 50 50 
Mar 50 47 43 44 47 43 41 
Apr 53 50 50 46 50 41 55 
Maj 56 53 47 44 42 47 47 
Jun 63 56 53 50 47 40 41 
Jul 47 46 47 44 36 42 50 
Aug 50 53 57 56 44 50 50 
Sep 56 39 43 44 39 44 41 
Oct 56 56 50 53 50 59 56 
Nov 47 46 63 67 72 65 63 
Dec 56 56 50 50 50 50 50 

Table 4.  Bootstrapped (n=5000) FY+, aggregate of all reservoirs, for the analogue approach 
with the ‘standard’ ESP approach being used as the reference.  Rows: month of hindcast 

initialization.  Columns: indicates the forecast months for which the HWR were defined (e.g., 
column “2” indicates HWRs were defined across forecast months 0 and 1; column “5” 

indicates HWRs across forecast months 0, 1, 2, 3 and 4; see main text) . The threshold for skill 
is 50%. Red shading indicates results below the skill threshold and blue indicates results 

above the skill threshold. 
  HWR classification period (months) 
  0 1 2 3 4 5 6 
Jan 0.010 -0.012 0.010 0.008 0.015 0.039 -0.026 
Feb -0.036 -0.026 -0.006 -0.017 -0.005 -0.009 -0.016 
Mar -0.006 0.004 -0.009 -0.006 -0.013 -0.017 -0.018 
Apr 0.013 -0.009 0.003 0.002 0.004 -0.006 0.012 
Maj 0.003 0.015 -0.015 -0.003 -0.027 -0.005 -0.011 
Jun 0.036 0.044 0.013 0.002 -0.007 -0.026 -0.023 
Jul -0.005 -0.023 0.000 -0.009 -0.038 -0.081 -0.016 
Aug 0.001 0.044 0.017 0.010 -0.062 0.004 0.005 
Sep 0.015 -0.028 -0.018 -0.008 -0.068 -0.010 0.001 
Oct 0.006 0.006 -0.008 0.008 0.013 0.005 0.009 
Nov 0.002 -0.017 0.016 0.015 0.046 0.033 0.035 
Dec 0.006 0.024 0.000 0.007 0.006 0.004 0.004 

Table 5.  Bootstrapped (n=5000) MAESS, aggregate of all reservoirs, for the analogue 
approach with the reference being the ‘standard’ ESP approach. Rows and columns: as Table 
4.  The threshold for skill is 0. Red shading indicates results below the skill threshold, white 

indicate results around the skill threshold, and blue indicates results above the skill threshold 
(the intensity of the shading indicates relatively how far away the results are from 0, light = 

near, dark = far). 
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These evaluation results of the evaluation of the weighted analogue approach against the 
ESP show mixed outcomes with the most consistent improvements in skill being found for 
the approach that uses HWRs classified in the one month following the forecast initialisation 
date. This is consistent with the findings reported in Deliverable 4.2 where the correlation 
between the ECMWF SEAS5 seasonal predictions and ERA-Interim reanalysis monthly 
frequency occurrence corresponding to the HWRs was highest for the first month after the 
initialization date (i.e., forecast month 0). This suggests that the ECMWF SEAS5 seasonal 
predictions over northern Sweden have limited value past the first month. 

 

6.4 Conclusions 
The use of HWRs, derived from ECMWF SEAS5 seasonal predictions, can improve the forecast 
skill of seasonal inflows to reservoirs in the Ume River system. The improved skill is most 
consistently achieved when analogues are selected using HWRs for the month following the 
forecast initialization date (i.e., forecast month 0). However, these results are modest. As the 
analogues are selected based on the weather regimes in the first month following the 
forecast initialization date only, the analogue selection is based on a very limited selection of 
the hydroclimatic period during which the inflows are generated. Future studies should 
evaluate whether analogues selected using HWRs classified over a period both before and 
after the forecast initialization date.   
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7 Use of remote climate indices to condition European 
national-scale energy balance indicator forecasts 

 

7.1 Introduction 
As was noted in Section 2.2.2, sudden stratospheric warmings can be followed by an 
increased frequency of cold air outbreaks over northern Europe and a southward shift of the 
storm track. These in turn will affect European energy demand and wind power. Since the 
tropospheric effects of an SSW event can persist for up to 60 days (Baldwin and Dunkerton, 
2001), there is potential for enhanced predictability of energy variables in the period 
following an SSW. This chapter investigates whether such an enhancement can be seen in the 
subseasonal hindcasts from ECMWF (elsewhere referred to as MFS) and NCEP in the S2S 
database. 

 

7.2 Method 
Subseasonal hindcasts of energy demand and wind power were calculated from hindcasts of 
2m temperature and 10m wind speed as described in Section 5.2 following the mean bias 
correction process. Hindcasts from both ECMWF (i.e., MFS) and NCEP were used. The ECMWF 
hindcasts cover the years 1996 to 2015 (encompassing 14 SSWs), and the NCEP hindcasts 
cover the years 1999 to 2010 (12 SSWs)  Since SSWs are a winter phenomenon, only 
hindcasts initialised in the months November to March were considered. Unlike in Chapter 5, 
all hindcasts initialised during these months were used, and no lagged ensembles were 
created. A 28 day mean of the energy variables was taken over the full four weeks (days 5-32) 
of the hindcast, and it was this mean that was verified. 

The hindcasts were verified against energy demand and wind power calculated from ERA5. 
Four verification metrics were computed: the Brier score for the lower decile, the Brier score 
for the upper decile, the ranked probability score (RPS) for terciles, and the continuous 
ranked probability score (CRPS).  The scores for hindcasts initialised at or soon after an SSW 
event were compared to the scores for hindcasts initialised at other times. The dates of SSWs 
were taken from the catalogue described in Section 2.2.2. For a hindcast to be associated 
with an SSW, the SSW had to satisfy three conditions: (i) it had to occur at or before the start 
date of the hindcast, (ii) it had to occur after the start date of the preceding hindcast, and (iii) 
it had to occur at most five days before the start date of the hindcast. 

Note that the verification metrics chosen were plain scores, not skill scores. The reason for 
this is that such scores are sample means of values calculated for each individual hindcast. 
This enables a two-sample t-test to be applied to gauge the significance of the difference of 
the scores. A difference is considered statistically significant if it fails the t-test at the 5% level. 
The results of this test should be treated with caution because the samples could deviate 
from the null hypothesis by being non-Gaussian or serially correlated as well as by having 
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different means, but nevertheless provide some suggestion of where more (or less) 
confidence can be placed in the observed signals. 

 

7.3 Results 
 

 

Figure 12. Differences in the verification metrics for ECMWF demand hindcasts using mean 
bias adjustment. Top left: Brier score for upper decile. Bottom left: Brier score for lower decile. 

Top right: RPS for terciles. Bottom right: CRPS.   
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Figure 13. Statistically significant differences in the verification metrics for ECMWF demand 
hindcasts using mean bias adjustment. Layout as in Figure 12. 

 

Figure 12 shows the differences in the four metrics for the ECMWF demand hindcasts using 
mean bias adjustment (i.e., without the optional variance inflation described in Section 
5.2)without variance inflation. The metric in the no SSW case is subtracted from the metric in 
the SSW case. Since these are negatively oriented metrics (smaller is better), a negative 
difference means that the hindcasts are better in the SSW case. It can be seen that the 
differences can be positive or negative. However, when we concentrate on the statistically 
significant differences, all the differences are negative, indicating an improvement in 
hindcasts in the SSW case (Figure 13). There is little consistency between the different metrics 
as to which countries improve in the SSW case. Sweden improves in three of the four metrics, 
but otherwise the improvements are scattered between Ireland in the west and Finland in the 
east, and Italy in the south and Norway in the north. 
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Figure 14.  Statistically significant differences in the verification metrics for NCEP demand 
hindcasts without variance inflation. Layout as in Figure 12.  

 

Figure 14 shows the statistically significant differences in the four metrics for the NCEP 
demand hindcasts without variance inflation. Again they are all negative, and again there is 
little spatial consistency between the four metrics. If anything, the improvements are more 
scattered than in the ECMWF hindcasts, with no country showing an improvement in more 
than two metrics, and the south western countries of Portugal, Spain, and France now added 
to those showing improvements. 
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Figure 15.  Statistically significant differences in the verification metrics for ECMWF wind 
power hindcasts without variance inflation. Layout as in Figure 12. 
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Figure 16.  Statistically significant differences in the verification metrics for the NCEP wind 
power hindcasts without variance inflation. Layout as in Figure 12. 

 

Figure 15 and Figure 16 show the statistically significant differences in the four metrics for the 
ECMWF and NCEP wind power hindcasts without variance inflation. In all but one case the 
differences are negative. There is some spatial coherence in the Brier scores, with the Brier 
score for the upper decile showing an improvement in the SSW case over the northern 
countries of Ireland, the UK, Norway, Sweden, and Finland, and the Brier score for the lower 
decile showing an improvement in the SSW case over the south western countries of 
Portugal, Spain, France. 

The results from the hindcasts with variance inflation are qualitatively the same as those from 
the hindcasts without, although the details differ. All statistically significant differences are 
negative, indicating an improvement in the hindcasts in the SSW case. There is not much sign 
of a coherent spatial pattern in the improvements in the demand hindcasts, but the wind 
power hindcasts show an improvement in the Brier score for the upper decile over northern 
countries and an improvement in the Brier score for the lower decile over south western 
countries. 
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7.4 Conclusions 
The hindcasts in the SSW case may be better or worse than in the no SSW case, but almost all 
the statistically significant differences in the verification metrics indicate an improved 
hindcast in the SSW case. 

There is no coherent spatial pattern in the improvements in the demand hindcasts. This may 
be due to the sensitivity of demand to the details of each country's power system. 

There is some spatial coherence in the improvements in the wind power hindcasts: in the 
SSW case the Brier score for the upper decile is better over northern countries and the Brier 
score for the lower decile is better over south western countries. Note that we expect lower 
winds over northern Europe and higher winds over south western Europe following an SSW, 
so these improvements indicate that the models are successfully capturing the reduced 
probability of the opposite extreme. 

 

  



 

GA n°776787 

57 Conditional predictability for energy-relevant variables 

8 Conclusions 
The analysis presented above investigates two areas where additional forecast skill may 
potentially be available in subseasonal and seasonal NWP systems.  Firstly, the use of hybrid 
pattern-based forecasts (based on large-scale atmospheric circulation as opposed to use of 
grid-point surface climate variables or simpler benchmark forecasts such as climatology and 
persistence).  Secondly, the potential for conditional predictability, here interpreted as 
changes in the predictive skill produced by forecast models during different prevailing 
atmospheric conditions (in this case, Stratospheric Sudden Warmings).  This work builds upon 
previous deliverables in terms of technique and analysis (particularly Deliverable D4.2 but 
also D3.1, D3.2 and D4.1). 

Several different approaches are tested, spanning a range of forecast systems and forecast 
time-scales.   As the details of each scheme are unique to each study, readers of this 
document are referred to the relevant sections in each individual chapter for detailed 
discussion of each method and its detailed findings.  A brief recap of the main findings from 
each chapter is, however, given below before a concluding synthesis. 

EATCs and seasonal NWP (Chapter 3).  A hybrid pattern-based seasonal forecast is 
constructed by first projecting the atmospheric circulation onto the four EATC patterns (NAO, 
EA, EAWR, SCA; see Deliverables D3.2 and D4.2), then exploiting observed statistical 
relationships between the EATCs and surface essential climate variables (wind, temperature, 
insolation).  In perfect model experiments (where the EATC state is fully known), the 
multilinear model fit works well in many European regions (France and Germany for 
temperature, British Isles and North of Germany for wind, Central Europe and Iberian 
Peninsula for surface solar radiation).  Correspondingly, the hybrid forecast (using predicted 
circulation from two different NWP seasonal forecast systems) is shown to offer 
improvements over grid-point forecasts and climatological forecasts over many areas of 
Europe (though the details depend on the variable and forecast system studied).   

Seasonally-evolving WR and monthly wind speeds (Chapter 4).  The potential utility of 
seasonally evolving WR patterns (a separate set of 4 WR is defined for each calendar month) 
in forecasting monthly-mean European surface wind speeds is investigated in a perfect 
model experiment (i.e., where the WR classification is known).  The area around the North 
Sea, the UK, northern and western Europe appear to be most impacted by WR state, with this 
impact more pronounced in wind extremes and during winter.  Other regions where WRs 
offer significant explanatory power are found in the Iberian Peninsula, Iceland, northern 
Scandinavia and the Agean Sea and to a lesser extent the Gulf of Lion (southern France).  
Nevertheless, a key limitation – as identified in Deliverable D4.2 - lies in the limited ability of 
NWP models to successfully predict these seasonally evolving WRs at lead times greater than 
week 1 or month 1 (subseasonal and seasonal respectively). 

Winter TCTs and subseasonal NWP (Chapter 5).  A hybrid pattern-based seasonal forecast 
is constructed by first assigning the atmospheric circulation into one of four TCT patterns (see 
Deliverables D3.2 and D4.2), then exploiting observed statistical relationships between the 
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TCTs and national-balance indicators (in this case, DNW).  This is benchmarked against the 
performance of climatology, persistence, grid-point and “fixed” WR forecasts (i.e. a single set 
of four WR is defined for the whole extended winter season).  For perfect-model experiments 
(where the TCT or WR assignment is known) TCTs are shown to offer considerable benefits 
over WRs.  In experiments where NWP subseasonal forecasts are used to assign WRs and 
TCTs, the most skillful forecast is typically provided by grid-point methods at short lead times 
(week 1-2).  However, at longer lead times the pattern-based methods begin to slightly 
outperform grid-point methods (the precise details depend on NWP forecast system, 
verification metric, methodology and geographical region).  In all cases, grid-point and 
pattern-based methods are typically better (or no worse) than climatological or persistence 
forecasts.  The WR and TCT pattern-based methods are found to have comparable 
performance though it is noted that a key limitation affecting TCTs is the weak constraint on 
the surface weather provided by geopotential height on 500 hPa (Z500): it is suggested that 
use of additional atmospheric variables (e.g., temperature in the lower troposphere) may 
provide opportunities for more refined TCT assignment and hence increase the available skill 
from a hybrid pattern-forecast based on TCT-style approaches. 

HWR and seasonal forecasts (Chapter 6).  A hybrid pattern-based forecasting method is 
applied to predict streamflow in a test river catchment in Sweden.  The HWR-based method 
is used to provide “weights” to members of a streamflow ensemble forecast.  This method is 
compared to existing streamflow ensemble forecast techniques.  These existing techniques 
have historically proven to be a hard benchmark to outperform but, through the use of 
HWRs, the ECMWF seasonal forecast is shown to provide modest improvements in forecast 
skill in the first month after the forecast initialisation (i.e., lead time 0). 

SSW-conditional predictability in subseasonal forecasts (Chapter 7).  The impact of SSW 
events on the forecast skill is investigated in the ECMWF and NCEP subseasonal systems.  The 
effect is shown to be subtle and, during SSWs, forecast performance in any given country 
may be slightly improved or degraded.  However, in almost all cases where the difference in 
performance was shown to be statistically significant, the verification metrics indicate 
improved performance following an SSW event.  The spatial pattern of improvement is found 
to be more coherent for wind power - particularly extremes - than demand.  A key limitation, 
however, is the small sample size of SSW events for which archived hindcasts are available. 

In general, the results suggest that pattern-based forecast schemes can indeed offer modest 
potential benefits over direct grid-point based methods, though the details of this are highly 
dependent on the precise methods and verification statistics applied.  Compared to a purely 
grid-point approach the EATC method predicting the 3 month average circulation appears to 
offer additional skill in month 1 (3 month average seasonal forecasts, Chapter 3).  The HWR 
method offers some skill improvements in month 0 (monthly streamflows from seasonal 
forecasts, Chapter 6).  TCTs and to a lesser extent the simpler “fixed” WR scheme appear to 
offer the potential for additional skill in each of weeks 2-4 (1-week average subseasonal 
forecasts, Chapter 5).  SSWs appear to be associated with forecast windows of slightly more 
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skill in some regions of Europe (monthly timescales, Chapter 7).  Each technique therefore 
offers some opportunity for skill improvements if carried through to an operational setting. 

As emphasized in Deliverable D4.2, however, it important to recall that the skill advantages 
provided by pattern-based techniques are generally quantitative and incremental in nature 
rather than representing a qualitative step-change.  Moreover, as demonstrated both here 
and in Deliverable D4.2, there are many subtleties in the detailed design of these pattern 
forecasting techniques that can strongly influence the resultant forecast skill.  This therefore 
confirms again that the process of the design of the circulation patterns must be closely 
integrated with the process of forecast skill assessment (e.g., through repeated iterations in 
design) if these developments are to be carried through to an operational setting. 
Furthermore, skill must be assessed on a case-by-case basis: skill in a particular performance 
metric or region should not be taken to imply skill in all regions or metrics. 
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