Seamless blending of subseasonal and seasonal forecasts

Ilias Pechlivanidis and Louise Crochemore

4th December 2020

Copyright (c) 2020 Ilias Pechlivanidis <ilias.pechlivanidis@smhi.se>
This work is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.

This project has received funding from the Horizon 2020 programme under grant agreement n°776787.
The content of this presentation reflects only the author’s view. The European Commission is not responsible for any use that may be made of the information it contains.
S2S services for climate-relevant sectors

<table>
<thead>
<tr>
<th>Forecast timescales</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weather</td>
<td>0 – 14 Days</td>
</tr>
<tr>
<td>Subseasonal</td>
<td>2 – 12 Weeks</td>
</tr>
<tr>
<td>Seasonal</td>
<td>3 – 12 Months</td>
</tr>
<tr>
<td>Interannual</td>
<td>1 Year – Decade</td>
</tr>
<tr>
<td>Climate</td>
<td>Decades - Centuries</td>
</tr>
</tbody>
</table>

Forecast timescales

- **Weather**: 0 – 14 Days
- **Subseasonal**: 2 – 12 Weeks
- **Seasonal**: 3 – 12 Months
- **Interannual**: 1 Year – Decade
- **Climate**: Decades - Centuries

Skill at different timescales

- **Weather**
- **Subseasonal**
- **Seasonal**
- **Interannual**
- **Climate**

Sources of skill

- Historical
- Medium & sub-seasonal
- Observations
- NWP
- CGCM

Data Provider

- Predictability
 - Atmosphere (weather)
 - Land
 - Ocean

Forecast Lead Time

- Daily values: Days 1-12
- Weekly averages: Weeks 3-4
- Monthly or seasonal averages: 30 – 90+ Days
- 30+ Year Climatologies: Decades to Centuries

Sources of skill

- Atmospheric
- Oceanic
S2S system characteristics

<table>
<thead>
<tr>
<th>System</th>
<th>Time res.</th>
<th>Spatial res.</th>
<th>Horizon</th>
<th>Ensemble size</th>
<th>Issue frequency</th>
<th>Hindcast set</th>
<th>Hindcast ensemble size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subseasonal</td>
<td>ENS-ER</td>
<td>6 h</td>
<td>18/36 km</td>
<td>46 days</td>
<td>Twice weekly</td>
<td>20 yrs</td>
<td>11 members</td>
</tr>
<tr>
<td>Seasonal</td>
<td>SEAS5</td>
<td>6 h</td>
<td>36 km</td>
<td>7 months</td>
<td>Monthly</td>
<td>36 yrs</td>
<td>25 members</td>
</tr>
</tbody>
</table>

Towards S2S seamless forecasting

The S2S4E DST is one of the first climate services providing S2S information in a seamless mode.

https://s2s4e-dst.bsc.es/
Motivation

Provide guidance and understanding on when (and why) to swap between subseasonal and seasonal forecasts

1. *What is the subseasonal and seasonal forecast skill?*

2. *What is the optimal combination horizon and its spatial pattern?*

3. *Where does the subseasonal forecasting skill come from?*

Bias-adjustment
- Distribution-based scaling (quantile mapping)

Hydrological model
- E-HYPE pan-European model
- ~215 km\(^2\) catchment resolution

S2S Evaluation
- Continuous Ranked Probability Skill Score (CRPSS)
Results

1. What is the subseasonal and seasonal forecast skill?

Forecast skill averaged for Europe

- ENS-ER forecasts initialized 4 times per month
- SEAS5 forecasts initialized once per month

Key message: ENS-ER benefits from updated initial conditions
2. What is the optimal combination horizon and its spatial pattern?
3. Where does the subseasonal forecasting skill come from?

ENS-ER precipitation forecasts generally have skill up to 1 week.

ENS-ER temperature forecasts generally have skill up to 1-2 weeks.

ENS-ER streamflow forecasts have a wide variety of skills, likely due to hydrological rather than meteorological processes.
3. Where does the subseasonal forecasting skill come from?

Results

- **Precipitation**
- **Temperature**

Forecast week 1

Forecast week 2

Forecast week 3

Forecast week 4

<table>
<thead>
<tr>
<th>No skill</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal combination horizon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S2S4E
Climate Services for Clean Energy
Take home messages

1. S2S forecasts can provide skillful hydrological forecasts over the European domain; however their skill varies seasonal and regionally. To narrow the information ‘gap’ between the subseasonal and seasonal systems (i.e. time window, skill), a seamless blending of the forecasts is needed.

2. The skill from subseasonal forecasts comes from frequent initialisations rather than from improved precipitation and temperature forecasts.

3. Rain-driven and mountainous regions only benefit from the subseasonal frequent initialisation up to 2 weeks.

4. Skills in precipitation and temperature are limited to 1 to 2 weeks ahead and their spatial patterns do not match.

5. An evolved climate service would allow diagnostic switching from the ENS-ER to SEAS5 system.
Thank you
Get in touch for more information!

Public reports of the project will be available for download on the S2S4E website: www.s2s4e.eu

Project coordinator: Albert Soret, Barcelona

Contact us: s2s4e@bsc.es

Follow us on Facebook and Twitter! @s2s4e

This project has received funding from the Horizon 2020 programme under grant agreement no. 776787.

The content of this presentation reflects only the author's view. The European Commission is not responsible for any use that may be made of the information it contains.

You are always welcome to share your views!

The SMHI Hydrology R&D unit