Efficient quantification of the impact of demand and weather uncertainty in energy system models

AP Hilbers ¹, DJ Brayshaw ², A Gandy ¹

¹: Department of Mathematics, Imperial College London
²: Department of Meteorology, University of Reading
Uncertainty on time series inputs leads to demand and weather uncertainty on model outputs
Uncertainty on time series inputs leads to demand and weather uncertainty on model outputs.

INPUTS

Demand & weather data at different locations on the grid
- Demand levels
- Wind speeds
- Solar irradiances
Uncertainty on time series inputs leads to demand and weather uncertainty on model outputs.

INPUTS

- Demand & weather data at different locations on the grid
 - Demand levels
 - Wind speeds
 - Solar irradiances

Energy system model (ESM)
Uncertainty on time series inputs leads to demand and weather uncertainty on model outputs.

INPUTS

Demand & weather data at different locations on the grid
- Demand levels
- Wind speeds
- Solar irradiances

Energy system model (ESM)
Uncertainty on time series inputs leads to *demand and weather uncertainty* on model outputs.

INPUTS

Demand & weather data at different locations on the grid
- Demand levels
- Wind speeds
- Solar irradiances

OUTPUTS

- Installed capacities of different technologies
- Hourly generation levels of different technologies
- Total system cost
- Total carbon emissions
Uncertainty on time series inputs leads to demand and weather uncertainty on model outputs.

INPUTS
- Demand & weather data at different locations on the grid
 - Demand levels
 - Wind speeds
 - Solar irradiances

OUTPUTS
- Installed capacities of different technologies
- Hourly generation levels of different technologies
- Total system cost
- Total carbon emissions

Uncertain inputs
Uncertainty on time series inputs leads to *demand and weather uncertainty* on model outputs.

INPUTS
- Demand & weather data at different locations on the grid
 - Demand levels
 - Wind speeds
 - Solar irradiances

OUTPUTS
- Installed capacities of different technologies
- Hourly generation levels of different technologies
- Total system cost
- Total carbon emissions

Uncertain inputs → *Demand and weather uncertainty on outputs*
Natural climate variability can lead to large uncertainty on energy system model outputs.
Natural climate variability can lead to large uncertainty on energy system model outputs

- Spread in model outputs across uncertain demand and weather can be large: risk in “picking wrong year”
Natural climate variability can lead to large uncertainty on energy system model outputs

- Spread in model outputs across uncertain demand and weather can be large: risk in “picking wrong year”
Natural climate variability can lead to large uncertainty on energy system model outputs.

- Spread in model outputs across uncertain demand and weather can be large: risk in “picking wrong year”
Natural climate variability can lead to large uncertainty on energy system model outputs

- Spread in model outputs across uncertain demand and weather can be large: risk in “picking wrong year”
Natural climate variability can lead to large uncertainty on energy system model outputs

- Spread in model outputs across uncertain demand and weather can be large: risk in “picking wrong year”
Natural climate variability can lead to large uncertainty on energy system model outputs

- Spread in model outputs across uncertain demand and weather can be large: risk in “picking wrong year”
Can we quantify this *demand* and *weather uncertainty*?
Can we quantify this demand and weather uncertainty?
Can we quantify this *demand and weather uncertainty*?
Traditional Monte Carlo methods are inefficient in data and computation

Obtain 100 years of data
Traditional Monte Carlo methods are inefficient in data and computation.

Obtain 100 years of data

- Year 1
- Year 2
- Year 3
- ...
- Year 98
- Year 99
- Year 100
Traditional Monte Carlo methods are inefficient in data and computation

- Year 1
- Year 2
- Year 3
 ...
- Year 98
- Year 99
- Year 100

Obtain 100 years of data ➔ run model
Traditional Monte Carlo methods are inefficient in data and computation.
Traditional Monte Carlo methods are inefficient in data and computation.

Obtain 100 years of data

- Year 1
- Year 2
- Year 3
- ...
- Year 98
- Year 99
- Year 100

run model

Model output
Traditional Monte Carlo methods are inefficient in data and computation

- Obtain 100 years of data
- Year 1
- Year 2
- Year 3
- ...
- Year 98
- Year 99
- Year 100

run model

Inefficient in
- data: 100 years of demand and weather data
- computation: 100 1-year simulations
New method resamples data into shorter subsamples to calculate uncertainty intervals more efficiently
New method resamples data into shorter subsamples to calculate uncertainty intervals more efficiently.

Obtain 5 years of data.
New method resamples data into shorter subsamples to calculate uncertainty intervals more efficiently

- Short sample 1
- Short sample 2
- Short sample 3
- ...
- Short sample 98
- Short sample 99
- Short sample 100
New method resamples data into shorter subsamples to calculate uncertainty intervals more efficiently.

- Obtain 5 years of data
 - Resample
 - Short sample 1
 - Short sample 2
 - Short sample 3
 - ... (to 98)
 - Short sample 99
 - Short sample 100

Resample weeks from seasons

 e.g. one week from winter, spring, summer, autumn
New method resamples data into shorter subsamples to calculate uncertainty intervals more efficiently.

Resample weeks from seasons
 e.g. one week from winter, spring, summer, autumn
New method resamples data into shorter subsamples to calculate uncertainty intervals more efficiently.

Obtain 5 years of data

- Short sample 1
- Short sample 2
- Short sample 3
- Short sample 98
- Short sample 99
- Short sample 100

Resample weeks from seasons

- e.g. one week from winter, spring, summer, autumn

Rescale model output
New method resamples data into shorter subsamples to calculate uncertainty intervals more efficiently

Obtain 5 years of data

- Short sample 1
- Short sample 2
- Short sample 3
- ...
- Short sample 98
- Short sample 99
- Short sample 100

Resample weeks from seasons

 e.g. one week from winter, spring, summer, autumn

Resample

... run model

rescale

Model output

\[
\text{short sample length} = \sqrt{\text{full sample length (1yr)}}
\]
New method resamples data into shorter subsamples to calculate uncertainty intervals more efficiently.

Obtain 5 years of data
resample

- Short sample 1
- Short sample 2
- Short sample 3
 ...
- Short sample 98
- Short sample 99
- Short sample 100

run model

Resample weeks from seasons
e.g. one week from winter, spring, summer, autumn

rescale

Efficient in
- data: 5 years of demand and weather data
- computation: 100 1-year short simulations
Summary
Summary

- Impact of demand and weather uncertainty on energy system model outputs can be significant.
Summary

• Impact of demand and weather uncertainty on energy system model outputs can be significant.

• Existing uncertainty quantification techniques inefficient in data and computation, often unfeasible.
Summary

• Impact of demand and weather uncertainty on energy system model outputs can be significant.

• Existing uncertainty quantification techniques inefficient in data and computation, often unfeasible.

• Approach, based on m out of n bootstrap, resamples shorter datasets, reducing computing cost and removes need for any additional data.
• Impact of demand and weather uncertainty on energy system model outputs can be significant.

• Existing uncertainty quantification techniques inefficient in data and computation, often unfeasible.

• Approach, based on m out of n bootstrap, resamples shorter datasets, reducing computing cost and removes need for any additional data.